Supplementary Information

Advanced materials for micro/nanorobotics

Jeonghyo Kim,[†]^a Paula Mayorga-Burrezo,[†]^b Su-Jin Song,[†]^a Carmen C. Mayorga-Martinez,^a Mariana Medina-Sánchez,^{c,d,e,f} Salvador Pané,^g and Martin Pumera^{*a,b,h,i}

^{a.} Advanced Nanorobots & Multiscale Robotics Laboratory, Faculty of Electrical Engineering and Computer Science, VSB – Technical University of Ostrava, 17. listopadu 2172/15, Ostrava 70800, Czech Republic

^{b.} Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, Brno 61200, Czech Republic

^{c.} CIC NanoGUNE BRTA, Tolosa Hiribidea 76, San Sebastián, 20018, Spain

^{d.} IKERBASQUE, Basque Foundation for Science, Plaza Euskadi, 5, Bilbao, 48009, Spain

^{e.} Micro- and NanoBiomedical Engineering Group (MNBE), Institute for Integrative Nanosciences, Leibniz Institute for Solid State and Materials Research (IFW), 01069, Dresden, Germany

^{f.} Chair of Micro- and NanoSystems, Center for Molecular Bioengineering (B CUBE), Dresden University of Technology, 01062, Dresden, Germany

^{g.} Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, ETH Zürich, Tannenstrasse 3, CH-8092 Zürich, Switzerland

^{h.} Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea

^{i.} Department of Medical Research, China Medical University Hospital, China Medical University, No. 91 Hsueh-Shih Road, Taichung, Taiwan

[†]These authors contributed equally to this work.

*Corresponding author: martin.pumera@vsb.cz, pumera.research@gmail.com

TABLE OF CONTENTS

- 1. Table S1. 2D materials-integrated micro/nanorobots
- 2. Table S2. ZIF type MOF-based micro/nanorobots
- 3. Table S3. UiO type MOF-based micro/nanorobots
- 4. Table S4. MIL type MOF-based micro/nanorobots
- 5. Table S5. Semiconducting metal oxides-based micro/nanorobots
- 6. Table S6. Semiconducting ternary metal oxides-based micro/nanorobots
- 7. **Table S7.** Semiconducting quantum dot (QD)- and metal chalcogenide-based micro/nanorobots
- 8. Table S8. Polymer-based micro/nanorobots
- 9. Table S9. Biological cell hybrid micro/nanorobots
- 10. **Table S10.** Advanced material-based micro/nanorobots: various designs, fabrication techniques, and size ranges
- 11. **Table S11.** Advanced material-based micro/nanorobots: comparison of speed by different energy sources

	Composition and types	Powering mechanisms (Sources)	Active component	2D materials functionalities	Application (targets)	Ref.
	MoS ₂ /Pt, MoS ₂ /Au tubular	Catalytic (H ₂ O ₂)	Pt, Au	Bio-interactive surfaces, quencher, drug loading	Biosensing (miRNA-21, thrombin) Drug delivery	1
TMDs (MoS ₂)	MoS ₂ /TiO ₂ microsphere	Light (λ = n.s.)	MoS ₂ /TiO ₂	Velocity enhancement, broaden absorption	Pathogen eradication (E. coli)	2
	S. platensis/Fe ₃ O ₄ /MoS ₂ /Au helical	Rotational magnetic field	Fe_3O_4	Photothermal conversion (photo absorbent)	Photothermal cell ablation (MG-63 cell)	3
	WS ₂ microsphere	Light (λ = 385 nm, 475 nm, 550 nm, 621 nm)	WS_2	Photothermal conversion	-	4
	WS ₂ /Pt, MoS ₂ /Pt tubular	Catalytic (H ₂ O ₂)	Pt	Bio-interactive surfaces, quencher	Biosensing (Endotoxins, LPS)	5
TMDs (WS ₂)	PCL/Pt/Fe/WS2 microsphere	Catalytic (H ₂ O ₂) Magnetic	Pt, Fe	Bio-interactive surfaces, quencher	Biosensing (Endotoxins, LPS)	6
	WS₂/Ni/Pt tubular	Catalytic (H ₂ O ₂) Magnetic	Pt, Ni	NIR-photocatalytic activity	Photodegradation (Remazol Brilliant Blue R)	7
	WS ₂ -PANI/Pt tubular	Catalytic (H ₂ O ₂)	Pt	Capacitive enhancement, on- demand delivery	On-demand circuit configuration	8
MXenes	TiO ₂ -Ti ₃ C ₂ /Pt 2D sheet	Light (λ = 365 nm), Catalytic (H ₂ O ₂)	TiO₂- Ti₃C₂/Pt	UV light-driven propulsion, on-off motion, photodegradation	Photodegradation (TNT)	9
(Ti ₃ C ₂)	Ti ₃ C ₂ T _x -Pt/TiO ₂ /γ-Fe ₂ O ₃ 2D sheet	Light (λ = 365 nm), magnetic	Ti ₃ C ₂ T _x - Pt/TiO ₂ /γ- Fe ₂ O ₃	UV light-driven propulsion, on-off motion, electrostatic capture	Sensing (Nanoplastic, PS nanobeads)	10
Xenes (2D As)	2D As-Pt 2D sheet	Catalytic (H ₂ O ₂)	Pt	Drug loading	Drug delivery	11
Xenes	BP-Pt microtubes	Catalytic (H ₂ O ₂)	Pt	Velocity enhancement	-	12
(BP)	PS/BP/Pt/Fe ₂ O ₃ microsphere	Catalytic (H ₂ O ₂) Magnetic	Pt, Fe ₂ O ₃	Bio-interactive surfaces, quencher	Biosensing (Cholera Toxin B)	13

Table S1. 2D materials-integrated micro/nanorobots

	PS/BP/Pt or MnO ₂ /Fe ₂ O ₃ microsphere	Catalytic (H ₂ O ₂) Magnetic	Pt or MnO_2 , Fe ₂ O ₃	Velocity enhancement	-	14
Xenes (2D Ge)	2D Ge-GO/Pt tubular	Catalytic (H ₂ O ₂)	Pt	Fluorescent labeling	-	15
	Pt-gC ₃ N ₄ microsphere	Light (λ = n.s.)	Pt-gC ₃ N ₄	UV-visible light-driven propulsion, on-off motion	-	16
	g-C₃N₄ tubular	Light (λ = 408 nm, 565 nm)	$g-C_3N_4$	Visible light-driven propulsion, on-off motion	Removal/FL sensing (Heavy metals)	17
	$g-C_3N_4/C$ microsphere	Light (λ = 420 nm)	g-C ₃ N ₄ /C	Visible light-driven propulsion, on-off motion, photodegradation	Photodegradation (RhB)	18
Carbon	Fe/C ₃ N ₄ microsphere	Light (λ = 532 nm), magnetic	Fe, C_3N_4	Visible light-driven propulsion, photodegradation	Photodegradation (CR(VI))	19
(C_3N_4)	$Fe_3O_4/f-C_3N_4$ microsphere	Light (λ = n.s.), magnetic	Fe_3O_4 , f- C_3N_4	Visible light-driven propulsion, photodegradation	Photodegradation (tetracycline)	20
	g-C ₃ N₄/Fe ₃ O₄/KF tubular	Light (λ = 420 nm), magnetic	$\begin{array}{l} g\text{-}C_3N_4,\\ Fe_3O_4 \end{array}$	Visible light-driven propulsion, on-off motion, photodegradation	Photodegradation (RhB)	21
	PLA/Grp/Al/Ga/Fe ₃ O ₄ /C ₃ N ₄ tubular	Catalytic (H ₂ O ₂) Magnetic	Al, Ga	Photocatalytic activity	Photodegradation (Picric acid)	22
	PHI (CN_x) microsphere	Light (λ = 365 nm, 385 nm, 415 nm, 470 nm)	PHI (CN _x)	UV-visible light-driven propulsion, photocharging	Controlled drug release, FL tracking	23, 24
MPX ₃ (MnPS ₃)	MnPS3-Fe3O4 2D sheet	Rotational magnetic field	Fe ₃ O ₄	Photocatalytic activity	Photodegradation (CPS, RhB)	25

Abbreviations: As, arsenene; BP, black phosphorus; CPS, chlorpyrifos; E. coli, Escherichia coli; FL, fluorescence; Ge, germanene; GO, graphene oxide; Grp, graphene; KF, kapok fiber; LPS, lipopolysaccharide; n.s., not specified; PANI, polyaniline; PCL, polycaprolactone; PHI, poly(heptazine imide); PS, polystyrene; RhB, Rhodamine B; TNT, trinitrotoluene.

	Composition and types	Powering mechanisms (Sources)	Active component	Maneuverability	MOF functionalities	Application (targets)	Ref.
	Fe ₃ O ₄ /Fe/ZIF/Pt microrods	Catalytic (H ₂ O ₂)	Pt	Magnetic guidance	Porous crystalline framework	Water treatment (Uranium)	26
	ZIF microhelices	Rotational magnetic field	Ni	Magnetic steering	Porous crystalline framework Biocompatibility pH-responsive degradation	Drug delivery	27
ZIF-8	UCNPs/TAPP/ZIF- 8/Catalase/GOx particles	Catalytic (H ₂ O ₂)	Catalase	-	Porous crystalline framework Biocompatibility	Cancer cell therapy	28
	KF/c-Fe ₂ O ₃ /c- Al ₂ O ₃ /MnO ₂ /ZIF-8 microtube	Catalytic propulsion (H ₂ O ₂)	MnO ₂	Magnetic guidance	Porous crystalline framework	Water treatment (CR, DOC)	29
	Fe/ZIF-8/GeIMA microhelices	Rotational magnetic field	Fe	Magnetic steering	Porous crystalline framework Biocompatibility pH-responsive degradation	Drug delivery	30
	ZIF-8/ZIF-67 Janus crystals	Catalytic (H ₂ O ₂)	ZIF-67 (Co-site)	-	Catalytic activity	n.s.	31
715 67	ZIF-67/Fe ₃ O ₄ particles	Catalytic (H ₂ O ₂)	ZIF-67 (Co)	Magnetic guidance	Catalytic activity Porous crystalline framework	Drug delivery	32
ZIF-07	ZIF-67 particles	Catalytic (H ₂ O ₂)	ZIF-67	-	Catalytic activity Porous crystalline framework	Drug delivery	33
	ZIF-67/TPM Janus particles	Light-triggered ionic self-diffusiophoresis	ZIF-67	-	Catalytic activity Porous crystalline framework	Water treatment (Hg)	34
	cat-β/ZIF particles	Catalytic (H ₂ O ₂)	Catalase	pH-regulated speed	Porous crystalline framework Biocompatibility	Drug delivery	35
ZIT-L	CAT-PDPA/ZIF-L particles	Catalytic (H ₂ O ₂)	Catalase	pH-controlled buoyancy	Porous crystalline framework Biocompatibility	Drug delivery in 3D cell culture	36
ZIF-8, ZIF- 67, ZIF-90, MOF-5	MOF/Au Janus particles	Self-diffusiophoresis, self-disintegration in water	ZIF-8, ZIF- 67, ZIF-90, MOF-5	-	Porous crystalline framework Self-disintegration behavior	Antibacterial therapy (E. coli) Wound healing	37

 Table S2. ZIF type MOF-based micro/nanorobots

Abbreviations: CAT, catalase; CR, congo red; DOC, doxycycline; DOX, doxorubicin; GOx, glucose oxidase; n.s., not specified; PDPA, poly (2diisopropylamino)ethyl methacrylate; PS, polystyrene; TAPP, 5,10,15,20-tetrakis(4-aminophenyl)porphyrin; TPM, 3-trimethoxysilyl propyl methacrylate; UCNPs, upconversion nanoparticles; ZIF, Zeolitic imidazolate framework.

Table S3. UiO type MOF-based micro/nanorobots

	Composition and types	Powering mechanisms (Sources)	Active component	Maneuverability	MOF functionalities	Application (targets)	Ref.
UiO-66	Fe ₃ O ₄ /UiO-66/Pt colloidosomes	Catalytic (H ₂ O ₂)	Pt	Magnetic guidance	Porous crystalline framework	Water treatment (MO, Cr (VI))	38
UiO-67	UiO-67-Co(bpy) particles UiO-67-Mn(bpy) particles	Catalytic (H ₂ O ₂)	Co, Mn	Chemically controllable speed (Deceleration by chelation, IDA/EDTA)	Porous crystalline framework	n.s.	39
UiO-type Zr-fcu	Zr-fcu-azo/sti-30% crystals	Catalytic (H ₂ O ₂)	Catalase	-	Porous crystalline framework	Water treatment (RhB)	40

Abbreviations: EDTA, ethylenediaminetetraacetic acid; IDA, iminodiacetic acid; MO, methyl orange; n.s., not specified; RhB, Rhodamine B; UiO, University of Oslo.

Table S4. MIL type MOF-based micro/nanorobots

	Composition and types	Powering mechanisms (Sources)	Active component	Maneuverability	MOF functionalities	Application (targets)	Ref.
MIL-100(Fe), MIL-125NH ₂ , UiO-66, ZIF-8	S. platensis/Fe₃O₄/Gelatin/ MOF microhelices	Rotational magnetic field	Fe ₃ O ₄	Magnetic steering	Porous crystalline framework Biocompatibility Photocatalytic activity	Drug delivery Water treatment (RhB)	41
MIL-88B	MIL-88B/PPy/MB crystals	Self-diffusiophoresis and thermal convection	MIL/PPy/MB	pH-regulated motion	Porous crystalline framework Photocatalytic activity	Cancer cell therapy	42

Abbreviations: DOX, doxorubicin; MB, methylene blue; MIL, Materials Institute Lavoisier; PPy, polypyrrole; RhB, Rhodamine B; S. platensis, Spirulina platensis.

Metal oxides	Fabrication techniques	Composition	Backbone material	E _g (eV)	Wavelength (nm)	Semiconductor functionalities	Application	Ref.
	Templated–assisted ALD	ZnO/Pt	ZnO microtubes			Light-responsiveness	n.s.	43
	Templated–assisted ALD/electrodeposition	ZnO/Ni	ZnO microtubes			Light-driven propulsion	n.s.	44
	Chemical precipitation/ heat treatment/PVD	ZnO/ZnO ₂ /Pt	ZnO microspheres			Photocatalytic activity Light-driven propulsion	Water treatment	45
	Chemical precipitation/heat treatment/PVD	ZnO/TiO ₂ /Pt	ZnO microspheres			Light-driven propulsion	n.s.	46
	Chemical precipitation/PVD	ZnO/Pt	ZnO microparticles			Photocatalytic activity Light-driven propulsion	Water treatment	47
	Hydrothermal reaction/sputtering	ZnO/Au	ZnO microrods			Light-driven propulsion	n.s.	48
ZnO	Hydrothermal reaction/annealing/sputter ing	ZnO/Pt	Hollow ZnO microspheres	~3.2-3.4	200-360/390	Light-driven propulsion Phototactic motion	Cargo delivery	49
	Hydrothermal reaction/calcination	ZnO/ZnO ₂	Yolk-shell ZnO microparticles			Light-driven propulsion	n.s.	50
	Hydrothermal reaction	ZnO/Ag	ZnO microstars			Photocatalytic activity Light-driven propulsion	Biofilm eradication	51
	Chemical precipitation	ZnO/Au	ZnO microstars			Photocatalytic activity Light-driven propulsion	Water treatment	52
	Hydrothermal reaction/polymerization	ZnO/Polysilox ane	ZnO microrods			Photocatalytic activity Light-driven propulsion	Water treatment	53
	Hydrothermal reaction/etching/E-beam evaporation	ZnO/Pt	ZnO microrods			Photocatalytic activity Light-driven propulsion	Water treatment	54
	FTS/sputtering/annealing/ HVPE	GaN/ZnO:Au	ZnO microneedles			Light-driven propulsion	n.s.	55

Table S5. Semiconducting metal oxides-based micro/nanorobots

	n.s.	Galistan/WO ₃	Galistan liquid metal marbles			Light-driven propulsion	n.s.	56
WO_3	Hydrothermal reaction/calcination/sputte ring	C/WO₃/Au	Carbon microspheres	~2.4-2.8	200-440/520	Photocatalytic activity Light-driven propulsion	Water treatment	57
	Hydrothermal reaction/calcination	WO ₃	WO₃ microspheres	-		Photocatalytic activity Light-driven propulsion	Water treatment	58
	Hydrothermal reaction/sputtering	Fe ₂ O ₃ /metal	Fe ₂ O ₃ microspheres			Photocatalytic activity Light-driven propulsion	Water treatment	59
	Chemical precipitation	$\alpha - Fe_2O_3$	α –Fe ₂ O ₃ microparticles			Phototactic motion Active assembly	n.s.	60
	Gel-sol methodology/ polymerization	Fe ₂ O ₃ /PTPM	Fe ₂ O ₃ microspheres			Light-driven propulsion	n.s.	61
Fe ₂ O ₃	Gel-sol methodology/ polymerization	Fe ₂ O ₃ /polysilo xane	Fe ₂ O ₃ microparticles	~1.9-2.2	200-560/650	Phototactic motion Active assembly	n.s.	62
	Hydrothermal reaction/sputtering	Fe ₂ O ₃ /Pt	Fe ₂ O ₃ microspheres			Photocatalytic activity Light-driven propulsion	Water treatment	63
	Templated–assisted gel- sol method/ hydrothermal reaction/surface modification	MnO₂/SiO₂/γ– Fe₂O₃	SiO ₂ microtubes			Photocatalytic activity Light-driven propulsion	Water treatment	64
	Hydrothermal reaction/wet chemistry	Halloysite/α– Fe₂O₃/Ag	Halloysite nanotubes			Photocatalytic activity Light-driven propulsion	Water treatment	65
β– FeOOH	PVD/ hydrolysis	PS/β– FeOOH/AgCl/ Ag	PS microspheres	~2.0–2.5	200-500/620	Light-driven propulsion	n.s.	66, 67
	Chemical precipitation/sputtering	Cu ₂ O/Au	Cu ₂ O microspheres			Light-driven propulsion	n.s.	68
Cu ₂ O	E-beam/annealing	SiO ₂ /TiO ₂ /Cu ₂ O	SiO ₂ microspheres	~1.9-2.2	200-560/650	Light-driven propulsion	n.s.	69
	Chemical precipitation	Cu ₂ O/N–CNT	Cu ₂ O microspheres			Light-driven propulsion Phototactic motion	n.s.	70

	Chemical precipitation	Cu ₂₊₁ O	Cu ₂₊₁ O microparticles	~1.54	200-800	Light-driven propulsion	n.s.	71
Cu₂O	Chemical precipitation/calcination	Cu ₂ O	Cu ₂ O truncated micro– octahedrons	~1.9-2.2	200-560/650	Light-driven propulsion	n.s.	72
0420	Hydrothermal reaction	Cu ₂ O	Hollow Cu ₂ O miscrospheres	1.0 2.2	200 000,000	Photocatalytic activity Light-driven propulsion	Biofilm eradication	73
Rh ₂ O ₃	Templated–assisted electrodeposition/annealin q	Rh ₂ O ₃ –Au	Rh ₂ O ₃ –Au microrods	~1.41	200-880	Light-driven propulsion Phototactic motion	n.s.	74

Abbreviations: ALD, atomic layer deposition; FTS, flame transport synthesis; HVPE, hydride vapor phase epitaxy; N-CNT, N-doped carbon nanotubes; n.s., not specified; PS, polystyrene; PTPM, poly (3-methylthienyl methacrylate); PVD, physical vapor deposition.

Ternary metal oxides	Fabrication techniques	Composition	Backbone material	E _g (eV)	Wavelength (nm)	Semiconductor functionalities	Application	Ref.		
	Templated–assisted PED/UV oxidation	CoNi/Bi ₂ O ₃ /BiO Cl	Bi ₂ O ₃ /BiOCI microtubes			Photocatalytic activity	Water treatment	75		
	Self–assembly process/chemical precipitation	Chlorella cells/Fe₃O₄/Bi OCl	Chlorella cells	~3.60	180-360	Photocatalytic activity	Water treatment Bacterial inactivation	76		
	Solvothermal method/photoreduction	$\begin{array}{c} {\sf Fe}_{0.11}{\sf Bi}_{0.89}{\sf OBr}/{\sf Fe}\\ {}_{3}{\sf O}_{4}/{\sf Mn}_{3}{\sf O}_{4} \end{array}$	Fe _{0.11} Bi _{0.89} OBr microspheres	~2.9	200-430	Photocatalytic activity	Water treatment	77		
	Chemical precipitation/sputtering	BiOI/Au	BiOI microspheres			Light-driven propulsion	n.s.	78		
BiOX	Hydrothermal reaction/chemical precipitation/sputtering	BiOI/AgI/Fe ₃ O ₄ /Au	BiOI microspheres			200 700		Photocatalytic activity Light-driven propulsion	Water treatment	79
	Chemical precipitation/electrosta tic interaction	BiOI/Fe ₃ O ₄	BiOI microspheres	~1.7	200-700	Photocatalytic activity	Water treatment	80		
	Co–precipitation method	BiOI/Fe ₃ O ₄	BiOI microflakes					Photocatalytic activity Light-driven propulsion	Water treatment	81
	Templated–assisted electrodeposition	rGO/ZnO/BiOI/ Co-Pi/Pt	rGO microtubes			Photocatalytic activity	Water treatment	82		
Bi ₂ WO ₆	Hydrothermal reaction/calcination	Bi ₂ WO ₆	Bi ₂ WO ₆ microspheres	~2.8	200-440	Photocatalytic activity Light-driven propulsion	Environmental remediation	83		
BiVO ₄	Coprecipitation method/hydrothermal reaction	BiVO ₄	BiVO ₄ microstars	~2.4	200-520	Photocatalytic activity Light-driven propulsion	Bacterial inactivation	84		
	Solvothermal method	BiVO ₄	BiVO ₄ microsquares			Light-driven propulsion	n.s.	85		

 Table S6.
 Semiconducting ternary metal oxides-based micro/nanorobots

Solvothermal method	BiVO ₄	BiVO ₄ microspheroids	Light-driven propulsion n.s. Active assembly	86
Coprecipitation method/hydrothermal reaction	BiVO ₄	BiVO ₄ microspheres with concave defects	Photocatalytic activity Light-driven propulsion	87
Hydrothermal reaction	BiVO ₄	BiVO ₄ microrods	Photocatalytic activity Water treatment Light-driven propulsion	88
Hydrothermal reaction	BiVO₄/GO	BiVO₄/GO microspheres	Photocatalytic activity Water treatment Light-driven propulsion	88
Coprecipitation method/hydrothermal reaction/electrostatic interaction	BiVO ₄ /Fe ₃ O ₄	BiVO ₄ microstars	Photocatalytic activity Food treatment Light-driven Water treatment propulsion	89, 90
Coprecipitation method/hydrothermal reaction/electrostatic interaction	PEI/Fe ₃ O ₄ /BiV O ₄	PEI/Fe ₃ O ₄ clusters	Photocatalytic Biofilm eradication activity	91

Abbreviations: GO, graphene oxide; n.s., not specified; PED, pulse electrodeposition; PEI, polyethylenimine.

Ternary metal oxides	Fabrication techniques	Composition	Backbone material	E _g (eV)	Wavelength (nm)	Semiconductor functionalities	Application	Ref.
	Templated–assisted electrodeposition	ZnS or CdS QDs/PANI/Pt	PANI/Pt microtubes	~3.8	200-330	Photocatalytic activity	Water treatment	92
	Templated–assisted electrodeposition	CdS QDs/C ₆₀ /Pt, Pd or MnO ₂	C ₆₀ microtubes	~2.9	200-430	Light- responsiveness	n.s.	93
	Oil–in–water emulsion	CdTe@ZnS or CdSe@ZnS QD _S /Fe₃O₄/PCL	PCL shells	~2.3	200-540	Photocatalytic activity Light-driven propulsion	Water treatment	94
QDs	Oil–in–water emulsion	CdSe@ZnS/Fe₃O₄/ PCL/ PLGA	PCL/PLGA shells	n.s.	n.s.	Photocatalytic activity Light-driven propulsion	Water treatment	95
	Chemical precipitation/in–situ deposition	Cu ₂ O/CdSe	Cu ₂ O truncated micro– octahedron s	~2.3	200-540	Light-driven propulsion	Water treatment	96
	Hydrothermal reaction	Cu ₂ O/PbS	Cu ₂ O micro– octahedron s	~0.6- 1.6	IR	Light-driven propulsion Fluorescence	n.s.	38
	Hydrothermal reaction/ion– exchange reaction/in–situ deposition/ALD/etchi ng	TiO₂/Fe₃O₄/CdS	CdS microtubes	~2.9	200-430	Photocatalytic activity Light-driven propulsion	Water treatment	97
No QDs	Microwave reaction	Sb_2S_3	Sb_2S_3 microrods	~1.6- 1.8	200-680/700	Photocatalytic activity Light-driven propulsion	Water treatment	98
	PVD/ALD	Sb ₂ Se ₃ /ZnO	Sb ₂ Se ₃ nanowires	~1.6	200-700	Light-driven propulsion	n.s.	99

Table S7. Semiconducting quantum dot (QD)- and metal chalcogenide-based micro/nanorobots

					Polarotactic navigation		
PVD/cation exchange reaction /sputtering	Zn _x Cd _{1-x} Se/Cu ₂ S/P t	Zn _x Cd _{1-x} Se nanowires	~1.7- 2.7	200-460/730	Light-driven propulsion	n.s.	100
Hydrothermal reaction/sputtering	CuS/Fe ₃ O ₄ /Pt	CuS microspher es	~2.1	200-600	Phototactic motion Photocatalytic activity	Water treatment	101
Hydrothermal reaction/photochemic al deposition	ZnIn₂S₄/Pt	ZnIn ₂ S ₄ microspher es	~2.08- 2.48	200-500/600	Photocatalytic activity Light-driven propulsion	Water treatment	102

Abbreviations: ALD, atomic layer deposition; n.s., not specified; PANI, polyaniline; PCL, polycaprolactone; PLGA, polylactic-co-glycolic acid; PVD, physical vapor deposition.

Table S8. Polymer-based micro/nanorobots

	Polymer types	Actuation sources	Polymer functionalities	Application	Ref.
	PNIPAM-co-ABP-AAc	Magnetic field, temperature	Remote-controlled capture, transport, and release	Sperm cell delivery	103
	PNIPAM	Catalytic (H ₂ O ₂), temperature	Temperature-controlled speed regulation	n.s.	104
Smart reconcision polymera	PTBC	Rotational magnetic field, temperature	Pick up and dispose of chemicals	Water treatment (arsenic, atrazine)	105
Smart responsive polymers	PDPA	Catalytic (H ₂ O ₂), pH	pH-controlled buoyancy	Drug delivery in 3D cell culture	36
	Liquid-crystal elastomers with azobenzene dye	Light	Light-controlled motion	n.s.	106
	pNIPAM, pNIPAM-AAc	Rotational magnetic field, temperature, pH	Temperature/pH-responsive structural change	on-demand active cargo delivery	107
	Py-Azine COF	Catalytic (H ₂ O ₂), magnetic field	Fluorescent labeling	Sensing (TNP)	108
	TAPB-PDA-COF TpAzo-COF	Light	Light-driven propulsion Biocompatibility Drug loading	Drug delivery	109
Porous organic polymers	porphyrin-COF	Light	Light-driven propulsion Biocompatibility	Cancer therapy	110
	Conjugated organic polymeric networks	Light	Light-driven propulsion Photocatalytic activity	Photodegradation (RhB, MB, MO) pH chemosensors	111
	Conjugated organic polymeric networks	Light	Light-driven propulsion Photocatalytic activity	Photodegradation (MDMA)	112
Conductivo polymera	PANI	Catalytic (H ₂ O ₂)	Conductive carrier layer	On-demand circuit configuration	8
Conductive polymers	PPy	Catalytic (H ₂ O ₂), magnetic field	Programmable surface property	Water treatment (α-oestradiol)	113

РРу	Light	Programmable surface property	Cancer cell therapy	42
PEDOT	Catalytic (H ₂ O ₂), ultrasound	Conductive carrier layer	n.s.	114, 115

Abbreviations: COF, covalent organic frameworks; MB, methylene blue; MDMA, 3,4-methylenedioxymethamphetamine; MO, methyl orange; n.s., not specified; PANI, polyaniline; PDPA, poly (2-diisopropylamino)ethyl methacrylate; PEDOT, poly(3,4-ethylene dioxythiophene); pNIPAM-AAc, poly N-isopropylacrylamide acrylic acid; PNIPAM-co-ABP-AAc, poly(N-isopropylacrylamide)-co-acryloylbenzophenone-co-(acrylic acid); PNIPAM, poly(N-isopropylacrylamide); PPy, polypyrrole; PTBC, pluronic tri-block copolymer; RhB, rhodamine B; TNP, 2,4,6-trinitrophenol.

Table S9. Biological cell h	ybrid micro/nanorobots
-----------------------------	------------------------

Types of biological cells	Species	Propulsion and navigation	Functional hybrid	Applications	Ref.
	M. magneticum strain AMB-1	Autonomous + magnetotaxis			116, 117
	M. magneticum strain AMB-1	Autonomous + magnetotaxis		Organic compound removal	
	M. magneticum strain AMB-1	Autonomous + magnetotaxis	Fe ₃ O ₄ NPs		118
МТВ	M. magneticum strain AMB-1	Autonomous + magnetotaxis	Photosensitizer NPs	Cancer therapy	119
	M. magneticum strain AMB-1	Autonomous + magnetotaxis		Drug delivery	120
	Magnetococcus marinus MC-1	Autonomous + magnetotaxis	Liposomes	Drug delivery	121
	M. gryphiswaldense MRS-1	Autonomous + magnetotaxis	Mesoporous silica microtube	Biofilm eradication	122
	<i>E. coli</i> MG1655	Autonomous	Liposome microparticles	Drug delivery	123
E. Coli.	<i>E. coli</i> MG1655	Autonomous + magnetotaxis	RBC/Fe ₃ O ₄ NPs	Drug delivery	124
	<i>E. coli</i> MG1655	Autonomous + chemotaxis + magnetotaxis	PEM-MNP microparticles	Drug delivery	125
	C2C12 myoblast	Electric pulse stimulation	PDMS-based hydrogel		126
	Embryonic stem cells and C2C12 myoblasts	External light stimuli	PDMS scaffold		127
wammalian cell	C2C12 myoblast	Bio-actuator	Polymer-based Flexible 3D Printed Bio- Bot Skeletons		128
	Mesenchymal stem cells	Extrinsic (magnetic)	PLGA microscffold with magnetic cluster	Knee cartilage regeneration	129

	PC12 cells	Magnetotaxis	Piezoelectric magnetic microswimmer	Targeted cell therapy	130
	Macrophage	Extrinsic (magnetic)	PLGA-DTX- Fe ₃ O ₄ NPs	Cancer Therapy	131
	Bovine sperm cells	Magnetotaxis	Tetrapod microstructures	Drug delivery	132
	Bull sperm cells	Magnetotaxis	Magnetic microtubes	Drug delivery	133
	Bovine sperm cells	Magnetotaxis	Fe ₂ O ₃ particles	Drug delivery	134
Sperm	Human sperm	Magnetotaxis	CPT-coated magnetic cap	Cancer therapy	135
	Bovine sperm cells	Magnetotaxis	4D printed sperm microcarriers via two- photon polymerization	Assisted fertilization	136
	Bovine sperm cells	Magnetotaxis	Iron oxide-polystyrene composite particles	Assisted fertilization	137
	C. reinhardtii	Autonomous	ACE2 receptor	Pathogen removal	138
	C. reinhardtii	Autonomous	Antibiotic polymeric NPs	Drug delivery	139
Microalgae	C. reinhardtii	Autonomous + magnetotaxis	Magnetic PS microparticles	Drug delivery	140
	C. reinhardtii	Autonomous + phototaxis	Chitosan-nanoparticle matrix	Drug delivery	141
	Spirulina	Magnetotaxis	Fe ₃ O ₄ NPs	Drug delivery, Imaging	142
	Sunflower sporopollenin exine capsule	Extrinsic (chemical)	Pt layer	Heavy metal removal	143
Pollen/spore	Pollen grains (dandelion, pine, lotus, etc)	Extrinsic (chemical)	Pt layer	Environmental remediation/ drug delivery	144

	Sunflower pollen	Extrinsic (magnetic)	Au/Co/Au layer	Cancer therapy	145
	Sunflower pollen	Extrinsic (magnetic)	Magnetic liquid metal droplets	Biofilm eradication	146
	Fungi spore	External (Magnetic)	Fe ₃ O ₄ NPs	Heavy metal removal	147
	Ganoderma lucidum spore	External (Magnetic)	Fe ₃ O ₄ NPs /Carbon dots	Pathogen removal	148
Plant callus	Tomato callus	Extrinsic (magnetic)	Fe ₃ O ₄ NPs	Drug delivery	149
	Tomato callus	Extrinsic (magnetic)	Fe ₃ O ₄ NPs	Organic compound removal	150

Abbreviations: ACE2, angiotensin-converting enzyme 2; C. reinhardtii, Chlamydomonas reinhardtii; E. coli, Escherichia coli; M. gryphiswaldense MRS-1, Magnetospirillum gryphiswaldense MSR-1; M. magneticum strain AMB-1, Magnetospirillum magneticum strain AMB-1; MNP, magnetite nanoparticles; PEM, polyelectrolyte multilayer; PS, polystyrene.

Design	Composition	Fabrication techniques	Size	Ref.
	ZIF-67 particles	In situ biomineralization	140 nm	33
	As-Pt 2D sheet	Sputtering	200-500 nm	11
	TABP-PDA-COF particles	Chemical method	452 ± 74 nm	109
Synthetic advanced materials	WO₃ microparticles	Hydrothermal reaction/calcination	1-2 µm	58
	MOF/Au Janus particles	Chemical method	1.6-3 µm	37
	MnPS ₃ -Fe ₃ O ₄ 2D sheets Electrostatic assembly		2-5 µm	25
	Bi ₂ WO ₆ microspheres	Hydrothermal reaction/calcination	~7 µm	83
	BiVO₄ microstars	Coprecipitation method/hydrothermal reaction	4-8 µm	84
	Zr-fcu-azo/sti-30% crystals	Chemical method	5-10 µm	40
	$Ti_3C_2T_x$ -Pt/TiO ₂ /γ-Fe ₂ O ₃ 2D sheets	Thermal annealing/e-beam evaporation	5-10 µm	10
	PHI (CN _x)/Pt, PHI (CN _x)/Au	Thermal polymerization/sputtering	1-3 µm	23
Microsphere	MoS ₂ /TiO ₂	E-beam evaporation	1-4.5 µm	2
robots	PHI (CN _x)	Thermal polymerization	1-5 µm	24
	Fe ₃ O ₄ /f-C ₃ N ₄	Thermal polymerization/solvothermal	5-10 µm	20

Table S10. Advanced material-based micro/nanorobots	: various designs, f	fabrication techniques,	and size ranges
---	----------------------	-------------------------	-----------------

	Fe ₃ O ₄ /UiO-66/Pt colloidosomes	Transient Pickering emulsion method	5-10 µm	38
	PCL/WS ₂ /Pt/Fe	Oil-water emulsion	~20 µm	6
	PS/Au/BP	Sputtering/Au-S bonding	~20 µm	13 14
	CdSe@ZnS/Fe₃O₄/PCL/ PLGA	Oil-in-water emulsion	10-25 µm	94
	Conjugated organic polymeric networks	Sol-gel method/Glaser-type polycondensation reactions	d: 2.5 µm, L:~17.5 µm	112
Tubular	MoS ₂ /Pt, MoS ₂ /Au	Template-assisted electrodeposition	d: 5 µm, L:~20 µm	1
robots	g-C ₃ N ₄ /Fe ₃ O ₄ /KF	Thermal polymerization/chemical reduction	d: ~20 μm, L:>50 μm	21
	g-C ₃ N ₄	Hydrothermal reaction/calcination	d: 9.7±1.5 μm, L: 67±14 μm	17
	S. platensis/Fe ₃ O ₄ /MoS ₂ / Au	Biotemplating/hydrothermal reaction	~50 µm	3
Helical robots	Fe/ZIF-8/GeIMA microhelices	Two-photon polymerization stereolithography	50-100 μm	30
	Macrophage	Cell culture	300 nm	131
	<i>E. coli</i> MG1655	Bacteria culture	2 µm	124
Biohybrid microrobots	<i>E. coli</i> MG1655	Bacteria culture	2 µm	125
	M. magneticum strain AMB-1	Bacteria culture	2.5 µm	120
	M. magneticum strain AMB-1	Bacteria culture	3 µm	119

C. reinhardtii	Microalgae Culture	10 µm	139
C. reinhardtii	Microalgae Culture	10 µm	140
Pollen grains (dandelion, pine, lotus, etc)	Natural products (commercial)/Sputtering	22-62 µm	144
Tomato callus	Callus cultivation	30–70 µm	150
Bovine sperm cells	Incubation	60–70 µm	134
Bovine sperm cells	Incubation	60–70 µm	136
Mesenchymal stem cells	Cell culture	357.55 μm	129

Abbreviations: As, arsenene; COF, covalent organic frameworks; GelMA, gelatin methacryloyl; PHI, poly(heptazine imide); S. platensis, Spirulina platensis; ZIF: zeolitic imidazolate framework.

Energy sources	Propulsion mechanism	Туре	Size (µm)	Speed (µm/s)	Speed (body length/s)	Ref.
	Catalytic, bubble propulsion	Zr-fcu-azo/sti-30% crystals	7.5		4	40
	Catalytic, ionic diffusiophoresis	MOF/Au Janus particles	2	17.2	8.6	37
Catalutia	Catalytic, bubble propulsion	MoS ₂ /Pt microtubes	10	370	37	1
Catalytic	Catalytic, bubble propulsion	ZIF-67 particles	0.14	8	57	33
	Catalytic, bubble propulsion	Fe₃O₄/UiO-66/Pt colloidosomes	7.5	450	60	38
	Catalytic, bubble propulsion	PANI/Pt microtubes	8	3000	375	151
	Light, self-diffusiophoresis	Conjugated organic polymer microtubes	17.5	7.04	0.4	112
	Light, photocatalytic bubble propulsion	$g-C_3N_4$ microtubes	67	72	1.1	17
	Light, self-electrophoresis	BiVO ₄ microspheres	5.1		1.1	87
Light	Light, self-electrophoresis	Ti ₃ C ₂ T _x -Pt/TiO ₂ /γ-Fe ₂ O ₃ 2D sheets	7.5	16	2.1	10
	Light, photocatalytic	PHI (CN _x) microparticles	2.5	23	9.5	24
	Light, photocatalytic	TABP-PDA-COF particles	0.452	16.4	36	109
	Light, photothermal	WS ₂ microparticles	0.8	6000	7500	4
Magnetic	Magnetic, tumbling	MnPS ₃ -Fe ₃ O ₄ 2D sheets	3	4.9	1.6	25

Table S11. Advanced material-based micro/nanorobots: comparison of speed by different energy sources

	Magnetic, tumbling	Fe ₃ O ₄ /Bi ₂ O ₃ /Ag microrods	6.9	13.2	1.9	152
	Magnetic, corkscrew motion	ZIF microhelices	25	50	2	27
	Magnetic, tumbling	pNIPAM/ pNIPAM-AAc/FePt microparticles	120	532	4.4	107
	Ultrasound	PPy microrods	5	30	6	153
Acquetie	Ultrasound	Au/Ru/Pt nanorods	2	200	100	154
Acoustic	Ultrasound	Au/Ru/Rh nanorods	2	200	100	155
	Ultrasound	Bubble-carried PEDOT/MnO ₂ microtubes	10	50000	5000	115
	Extrinsic (magnetic)	Mesenchymal stem cells	357.6	2.88	0.01	129
	Magnetotaxis	Bovine sperm cells	60	6.8	0.11	134
	Extrinsic (magnetic)	Tomato callus	50	6.02	0.12	150
Piebybride	Magnetotaxis	Bovine sperm cells	60	7	0.17	136
Biohybrids	Autonomous + magnetotaxis	M. magneticum strain AMB-1	3	13.3	4.4	119
	Extrinsic (chemical)	Pollen grains (dandelion, pine, lotus, etc)	42	200	4.8	144
	Autonomous + magnetotaxis	<i>E. coli</i> MG1655	2	10.2	5.1	124
	Autonomous + magnetotaxis	C. reinhardtii	10	51.44	5.1	140

Autonomous + magnetotaxis	M. magneticum strain AMB-1	2.5	20.5	8.2	120
Autonomous	C. reinhardtii	10	104.6	10.5	139
Autonomous + chemotaxis + magnetotaxis	<i>E. coli</i> MG1655	2	22.5	11.3	125

Abbreviations: COF, covalent organic frameworks; E. coli, Escherichia coli; PHI, poly(heptazine imide); pNIPAM-AAc, poly N-isopropylacrylamide acrylic acid; PNIPAM, poly(N-isopropyl acrylamide); PPy, polypyrrole; ZIF: zeolitic imidazolate framework.

Supplementary References

- 1. V. V. Singh, K. Kaufmann, B. E. F. de Ávila, E. Karshalev and J. Wang, *Advanced Functional Materials*, 2016, **26**, 6270-6278.
- 2. Y. Huang, J. Guo, Y. Li, H. Li and D. E. Fan, *Advanced Materials*, 2022, **34**, 2203082.
- 3. V. de la Asunción-Nadal, C. Franco, A. Veciana, S. Ning, A. Terzopoulou, S. Sevim, X. Z. Chen, D. Gong, J. Cai and P. D. Wendel-Garcia, *Small*, 2022, **18**, 2203821.
- 4. V. de la Asunción-Nadal, D. Rojas, B. Jurado-Sánchez and A. Escarpa, *Journal of Materials Chemistry A*, 2023, **11**, 1239-1245.
- 5. V. c. d. la Asunción-Nadal, M. Pacheco, B. Jurado-Sanchez and A. Escarpa, *Analytical Chemistry*, 2020, **92**, 9188-9193.
- 6. M. Pacheco, V. de la Asunción-Nadal, B. Jurado-Sánchez and A. Escarpa, *Biosensors and Bioelectronics*, 2020, **165**, 112286.
- 7. V. de la Asunción-Nadal, B. Jurado-Sánchez, L. Vázquez and A. Escarpa, *Chemical Science*, 2020, **11**, 132-140.
- 8. C. C. Mayorga-Martinez, J. G. S. Moo, B. Khezri, P. Song, A. C. Fisher, Z. Sofer and M. Pumera, *Advanced Functional Materials*, 2016, **26**, 6662-6667.
- 9. C. C. Mayorga-Martinez, J. Vyskočil, F. Novotný and M. Pumera, *Journal of Materials Chemistry A*, 2021, 9, 14904-14910.
- 10. M. Urso, M. Ussia, F. Novotný and M. Pumera, *Nature Communications*, 2022, **13**, 3573.
- 11. N. F. Rosli, C. C. Mayorga-Martinez, A. C. Fisher, O. Alduhaish, R. D. Webster and M. Pumera, *Applied Materials Today*, 2020, **21**, 100819.
- 12. T. Maric, J. G. S. Moo, B. Khezri, Z. Sofer and M. Pumera, *Applied Materials Today*, 2017, **9**, 289-291.
- 13. K. Yuan, M. A. n. López, B. Jurado-Sanchez and A. Escarpa, ACS Applied Materials & Interfaces, 2020, **12**, 46588-46597.
- 14. K. Yuan, V. de la Asuncion-Nadal, B. Jurado-Sanchez and A. Escarpa, *Chemistry of Materials*, 2020, **32**, 1983-1992.
- 15. T. Maric, S. M. Beladi-Mousavi, B. Khezri, J. Sturala, M. Z. M. Nasir, R. D. Webster, Z. Sofer and M. Pumera, *Small*, 2020, **16**, 1902365.
- 16. Z. Ye, Y. Sun, H. Zhang, B. Song and B. Dong, *Nanoscale*, 2017, **9**, 18516-18522.
- 17. K. Villa, C. L. Manzanares Palenzuela, Z. Sofer, S. Matějková and M. Pumera, ACS Nano, 2018, **12**, 12482-12491.
- 18. X. Song, Y. Tao, J. Liu, J. Lin, P. Dai, Q. Wang, W. Li, W. Chen and C. Zheng, *RSC Advances*, 2022, **12**, 13116-13126.
- 19. M. P. Rayaroth, D. Oh, C.-S. Lee, N. Kumari, I. S. Lee and Y.-S. Chang, Journal of Colloid and Interface Science, 2021, 597, 94-103.
- 20. K. Feng, J. Gong, J. Qu and R. Niu, ACS Applied Materials & Interfaces, 2022, 14, 44271-44281.
- 21. C. Zheng, X. Song, Q. Gan and J. Lin, *Journal of Colloid and Interface Science*, 2023, 630, 121-133.
- 22. B. Khezri, K. Villa, F. Novotný, Z. Sofer and M. Pumera, *Small*, 2020, **16**, 2002111.
- 23. V. Sridhar, F. Podjaski, J. Kröger, A. Jiménez-Solano, B.-W. Park, B. V. Lotsch and M. Sitti, *Proceedings of the National Academy of Sciences*, 2020, **117**, 24748-24756.
- 24. V. Sridhar, F. Podjaski, Y. Alapan, J. Kröger, L. Grunenberg, V. Kishore, B. V. Lotsch and M. Sitti, *Science Robotics*, 2022, **7**, eabm1421.
- 25. J. Kim, C. C. Mayorga-Martinez and M. Pumera, *Chemical Engineering Journal*, 2022, **446**, 137342.
- 26. Y. Ying, A. M. Pourrahimi, Z. Sofer, S. Matějková and M. Pumera, ACS Nano, 2019, 13, 11477-11487.
- 27. X. Wang, X. Z. Chen, C. C. Alcântara, S. Sevim, M. Hoop, A. Terzopoulou, C. De Marco, C. Hu, A. J. de Mello and P. Falcaro, *Advanced Materials*, 2019, **31**, 1901592.
- 28. Y. You, D. Xu, X. Pan and X. Ma, *Applied Materials Today*, 2019, **16**, 508-517.

- 29. J. Liu, J. Li, G. Wang, W. Yang, J. Yang and Y. Liu, *Journal of Colloid and Interface Science*, 2019, **555**, 234-244.
- 30. A. Terzopoulou, X. Wang, X. Z. Chen, M. Palacios-Corella, C. Pujante, J. Herrero-Martín, X. H. Qin, J. Sort, A. J. deMello and B. J. Nelson, *Advanced Healthcare Materials*, 2020, **9**, 2001031.
- 31. T. T. Tan, J. T. Cham, M. R. Reithofer, T. A. Hor and J. M. Chin, *Chemical Communications*, 2014, **50**, 15175-15178.
- 32. L. Wang, H. Zhu, Y. Shi, Y. Ge, X. Feng, R. Liu, Y. Li, Y. Ma and L. Wang, *Nanoscale*, 2018, **10**, 11384-11391.
- 33. X. Peng, S. Tang, D. Tang, D. Zhou, Y. Li, Q. Chen, F. Wan, H. Lukas, H. Han and X. Zhang, Science Advances, 2023, 9, eadh1736.
- 34. M. Ikram, F. Hu, G. Peng, M. Basharat, N. Jabeen, K. Pan and Y. Gao, ACS Applied Materials & Interfaces, 2021, 13, 51799-51806.
- 35. S. Gao, J. Hou, J. Zeng, J. J. Richardson, Z. Gu, X. Gao, D. Li, M. Gao, D. W. Wang and P. Chen, *Advanced Functional Materials*, 2019, **29**, 1808900.
- 36. Z. Guo, T. Wang, A. Rawal, J. Hou, Z. Cao, H. Zhang, J. Xu, Z. Gu, V. Chen and K. Liang, *Materials Today*, 2019, 28, 10-16.
- 37. X. Liu, X. Sun, Y. Peng, Y. Wang, D. Xu, W. Chen, W. Wang, X. Yan and X. Ma, ACS Nano, 2022, 16, 14666-14678.
- 38. H. Huang, J. Li, M. Yuan, H. Yang, Y. Zhao, Y. Ying and S. Wang, Angewandte Chemie International Edition, 2022, 61, e202211163.
- 39. J. Li, X. Yu, M. Xu, W. Liu, E. Sandraz, H. Lan, J. Wang and S. M. Cohen, Journal of the American Chemical Society, 2017, 139, 611-614.
- 40. Y. Yang, X. Arqué, T. Patiño, V. Guillerm, P.-R. Blersch, J. Pérez-Carvajal, I. Imaz, D. Maspoch and S. Sánchez, *Journal of the American Chemical Society*, 2020, **142**, 20962-20967.
- 41. A. Terzopoulou, M. Palacios-Corella, C. Franco, S. Sevim, T. Dysli, F. Mushtaq, M. Romero-Angel, C. Martí-Gastaldo, D. Gong and J. Cai, *Advanced Functional Materials*, 2022, **32**, 2107421.
- 42. L. Dekanovsky, Y. Ying, J. Zelenka, J. Plutnar, S. M. Beladi-Mousavi, I. Křížová, F. Novotný, T. Ruml and M. Pumera, *Advanced Functional Materials*, 2022, **32**, 2205062.
- 43. R. Dong, C. Wang, Q. Wang, A. Pei, X. She, Y. Zhang and Y. Cai, *Nanoscale*, 2017, **9**, 15027-15032.
- 44. C. Wang, R. Dong, Q. Wang, C. Zhang, X. She, J. Wang and Y. Cai, Chemistry–An Asian Journal, 2019, 14, 2485-2490.
- 45. A. M. Pourrahimi, K. Villa, Y. Ying, Z. Sofer and M. Pumera, ACS Applied Materials & Interfaces, 2018, **10**, 42688-42697.
- 46. A. M. Pourrahimi, K. Villa, Z. Sofer and M. Pumera, *Small Methods*, 2019, **3**, 1900258.
- 47. A. M. Pourrahimi, K. Villa, C. L. Manzanares Palenzuela, Y. Ying, Z. Sofer and M. Pumera, *Advanced Functional Materials*, 2019, **29**, 1808678.
- 48. S. Du, H. Wang, C. Zhou, W. Wang and Z. Zhang, *Journal of the American Chemical Society*, 2020, **142**, 2213-2217.
- 49. X. He, H. Jiang, J. Li, Y. Ma, B. Fu and C. Hu, Small, 2021, 17, 2101388.
- 50. L. Wang, M. Borrelli and J. Simmchen, *ChemPhotoChem*, 2021, **5**, 933-939.
- 51. M. Ussia, M. Urso, K. Dolezelikova, H. Michalkova, V. Adam and M. Pumera, *Advanced Functional Materials*, 2021, **31**, 2101178.
- 52. C. M. Oral, M. Ussia and M. Pumera, *Small*, 2022, **18**, 2202600.
- 53. X. Zhang, W. Xie, S. Du, H. Wang and Z. Zhang, *Langmuir*, 2022, **38**, 4389-4395.
- 54. Y. Ying, A. M. Pourrahimi, C. L. Manzanares-Palenzuela, F. Novotny, Z. Sofer and M. Pumera, *Small*, 2020, **16**, 1902944.
- 55. N. Wolff, V. Ciobanu, M. Enachi, M. Kamp, T. Braniste, V. Duppel, S. Shree, S. Raevschi, M. Medina-Sanchez, R. Adelung, O. G. Schmidt, L. Kienle and I. Tiginyanu, *Small*, 2020, **16**, e1905141.
- 56. X. K. Tang, S. Y. Tang, V. Sivan, W. Zhang, A. Mitchell, K. Kalantar-zadeh and K. Khoshmanesh, *Appl Phys Lett*, 2013, **103**,174104.

- 57. Q. Zhang, R. Dong, Y. Wu, W. Gao, Z. He and B. Ren, ACS Appl Mater Interfaces, 2017, 9, 4674-4683.
- 58. X. Peng, M. Urso and M. Pumera, Npj Clean Water, 2023, 6, 21.
- 59. M. Urso, M. Ussia and M. Pumera, *Adv. Funct. Mater*, 2021, **31**, 2101510.
- 60. Z. H. Lin, T. Y. Si, Z. G. Wu, C. Y. Gao, X. K. Lin and Q. He, *Angew Chem Int Edit*, 2017, **56**, 13517-13520.
- 61. J. Zhu, H. G. Wang and Z. X. Zhang, *Langmuir*, 2021, **37**, 4964-4970.
- 62. N. Kang, J. Zhu, X. L. Zhang, H. G. Wang and Z. X. Zhang, *Journal of the American Chemical Society*, 2022, **144**, 4754-4758.
- 63. X. Peng, M. Urso and M. Pumera, *Small Methods*, 2021, **5**, 2100617.
- 64. K. Villa, J. Parmar, D. Vilela and S. Sánchez, Acs Applied Materials & Interfaces, 2018, 10, 20478-20486.
- 65. J. Wang, J. W. Si, Y. Z. Hao, J. Y. Li, P. P. Zhang, C. X. Zuo, B. Jin, Y. Wang, W. Zhang, W. Q. Li, R. F. Guo and S. D. Miao, *Langmuir*, 2022, **38**, 1231-1242.
- 66. T. Huang, B. Ibarlucea, A. Caspari, A. Synytska, G. Cuniberti, J. de Graaf and L. Baraban, *Eur Phys J E*, 2021, 44, 39.
- 67. T. Huang, V. Misko, A. Caspari, A. Synytska, B. Ibarlucea, F. Nori, J. Fassbender, G. Cuniberti, D. Makarov and L. Baraban, *Commun Mater*, 2022, **3**, 60.
- 68. D. K. Zhou, Y. C. Li, P. T. Xu, N. S. McCool, L. Q. Li, W. Wang and T. E. Mallouk, *Nanoscale*, 2017, 9, 1315-1315.
- 69. É. O'Neel-Judy, D. Nicholls, J. Castañeda and J. G. Gibbs, *Small*, 2018, **14**, 1801860.
- 70. Q. L. Wang, R. F. Dong, C. Wang, S. Y. Xu, D. C. Chen, Y. Y. Liang, B. Y. Ren, W. Gao and Y. P. Cai, ACS Applied Materials & Interfaces, 2019, **11**, 6201-6207.
- 71. Q. L. Wang, R. F. Dong, Q. X. Yang, J. J. Wang, S. Y. Xu and Y. P. Cai, *Nanoscale Horiz*, 2020, 5, 325-330.
- 72. W. J. Liu, X. Chen, X. Y. Ding, Q. Long, X. L. Lu, Q. Wang and Z. W. Gu, *Nanoscale Horiz*, 2021, **6**, 238-244.
- 73. H. X. Tan, B. Chen, M. H. Liu, J. M. Jiang, J. F. Ou, L. Liu, F. Wang, Y. C. Ye, J. B. Gao, J. Sun, F. Peng and Y. F. Tu, *Chem Eng J*, 2022, **448**, 137689.
- 74. D. H. Cui, X. L. Lyu, S. F. Duan, Y. X. Peng and W. Wang, *Acs Appl Nano Mater*, 2022, **5**, 14235-14240.
- 75. F. Mushtaq, M. Guerrero, M. S. Sakar, M. Hoop, A. M. Lindo, J. Sort, X. Z. Chen, B. J. Nelson, E. Pellicer and S. Pané, *J Mater Chem* A, 2015, **3**, 23670-23676.
- 76. L. Xu, D. Gong, N. Celi, J. J. Xu, D. Y. Zhang and J. Cai, *Appl Surf Sci*, 2022, **579**, 152165.
- 77. Y. Liu, J. Li, J. Y. Li, X. H. Yan, F. D. Wang, W. N. Yang, D. H. L. Ng and J. Yang, *J Clean Prod*, 2020, **252**, 119573.
- 78. R. F. Dong, Y. Hu, Y. F. Wu, W. Gao, B. Y. Ren, Q. L. Wang and Y. P. Cai, *Journal of the American Chemical Society*, 2017, **139**, 1722-1725.
- 79. Z. H. Zhan, F. N. Wei, J. H. Zheng, C. Yin, W. G. Yang, L. G. Yao, S. S. Tang and D. Liu, *Mater Lett*, 2020, **258**, 126825.
- 80. P. Mayorga-Burrezo, C. C. Mayorga-Martinez, J. Kim and M. Pumera, *Chem Eng J*, 2022, **446**, 137139.
- 81. K. Khairudin, N. F. A. Bakar and M. S. Osman, *J Environ Chem Eng*, 2022, **10**, 108275.
- 82. H. J. Zhou, B. Wu, L. Dekanovsky, S. Y. Wei, B. Khezri, T. Hartman, J. H. Li and Z. Sofer, *Flatchem*, 2021, **30**, 100294.
- 83. K. Villa, L. Dekanovsky, J. Plutnar, J. Kosina and M. Pumera, *Advanced Functional Materials*, 2020, **30**, 2007073.
- 84. K. Villa, F. Novotny, J. Zelenka, M. P. Browne, T. Ruml and M. Pumera, ACS Nano, 2019, **13**, 8135-8145.
- 85. S. Heckel and J. Simmchen, *Advanced Intelligent Systems*, 2019, **1**, 1900093.
- 86. S. Heckel, J. Grauer, M. Semmler, T. Gemming, H. Löwen, B. Liebchen and J. Simmchen, *Langmuir*, 2020, **36**, 12473-12480.

- 87. P. Mayorga-Burrezo, C. C. Mayorga-Martinez and M. Pumera, *Advanced Functional Materials*, 2022, **32**, 2106699.
- 88. Z. C. Chen, J. W. Jiang, X. Wang, H. Zhang, B. Song and B. Dong, *J Mater Sci*, 2022, **57**, 4092-4103.
- 89. K. Villa, J. Vyskocil, Y. L. Ying, J. Zelenka and M. Pumera, *Chem-Eur J*, 2020, **26**, 3039-3043.
- 90. S. M. Beladi-Mousavi, S. Hermanová, Y. L. Ying, J. Plutnar and M. Pumera, Acs Applied Materials & Interfaces, 2021, 13, 25102-25110.
- 91. C. C. Mayorga-Martinez, J. Zelenka, K. Klima, P. Mayorga-Burrezo, L. Hoang, T. Ruml and M. Pumera, ACS Nano, 2022, 16, 8694-8703.
- 92. B. Jurado-Sánchez, J. Wang and A. Escarpa, *Acs Applied Materials & Interfaces*, 2016, **8**, 19618-19625.
- 93. R. M. Hormigos, B. J. Sánchez and A. Escarpa, Angew Chem Int Edit, 2019, 58, 3128-3132.
- 94. M. Pacheco, B. Jurado-Sánchez and A. Escarpa, *Angew Chem Int Edit*, 2019, **58**, 18017-18024.
- 95. M. Pacheco, B. Jurado-Sánchez and A. Escarpa, *Nanoscale*, 2021, **13**, 17106-17115.
- 96. X. Chen, X. Y. Ding, Y. L. Liu, J. Li, W. J. Liu, X. L. Lu and Z. W. Gu, *Appl Mater Today*, 2021, **25**, 101200.
- 97. Y. L. Ying, J. Plutnar and M. Pumera, *Small*, 2021, **17**, 2101665.
- 98. A. Jancik-Prochazkova and M. Pumera, *Nanoscale*, 2023, **15**, 5726-5734.
- 99. X. J. Zhan, J. Zheng, Y. Zhao, B. R. Zhu, R. Cheng, J. Z. Wang, J. Liu, J. Tang and J. Y. Tang, Adv Mater, 2019, 31, 1903329.
- 100. J. Zheng, J. Z. Wang, Z. Xiong, Z. H. Wan, X. J. Zhan, S. Y. Yang, J. W. Chen, J. Dai and J. Y. Tang, *Advanced Functional Materials*, 2019, **29**, 1901768.
- 101. E. H. Ma, K. Wang, Z. Q. Hu and H. Wang, *J Colloid Interf Sci*, 2021, **603**, 685-694.
- 102. H. Zhang, X. Hu, T. Li, Y. Zhang, H. Xu, Y. Sun, X. Gu, C. Gu, J. Luo and B. Gao, Journal of Hazardous Materials, 2022, 429, 128271.
- 103. V. Magdanz, M. Guix, F. Hebenstreit and O. G. Schmidt, Advanced Materials, 2016, 28, 4084-4089.
- 104. Y. Tu, F. Peng, X. Sui, Y. Men, P. B. White, J. C. van Hest and D. A. Wilson, *Nature Chemistry*, 2017, 9, 480-486.
- 105. J. V. Vaghasiya, C. C. Mayorga-Martinez, S. Matějková and M. Pumera, *Nature Communications*, 2022, **13**, 1026.
- 106. S. Palagi, A. G. Mark, S. Y. Reigh, K. Melde, T. Qiu, H. Zeng, C. Parmeggiani, D. Martella, A. Sanchez-Castillo and N. Kapernaum, *Nature Materials*, 2016, **15**, 647-653.
- 107. Y. W. Lee, J. K. Kim, U. Bozuyuk, N. O. Dogan, M. T. A. Khan, A. Shiva, A. M. Wild and M. Sitti, Advanced Materials, 2023, 35, 2209812.
- 108. K. Wang, W. Wang, S. Pan, Y. Fu, B. Dong and H. Wang, *Applied Materials Today*, 2020, **19**, 100550.
- 109. V. Sridhar, E. Yildiz, A. Rodríguez-Camargo, X. Lyu, L. Yao, P. Wrede, A. Aghakhani, B. M. Akolpoglu, F. Podjaski and B. V. Lotsch, *Advanced Materials*, 2023, 2301126.
- 110. J. Feng, S. P. Yang, Y. Q. Shao, Y. Y. Sun, Z. L. He, Y. Wang, Y. N. Zhai and Y. B. Dong, *Advanced Healthcare Materials*, 2023, **12**, 2301645.
- 111. Y. S. Kochergin, K. Villa, F. Novotný, J. Plutnar, M. J. Bojdys and M. Pumera, *Advanced Functional Materials*, 2020, **30**, 2002701.
- 112. Y. S. Kochergin, K. Villa, A. Nemeskalova, M. Kuchař and M. Pumera, ACS Nano, 2021, 15, 18458-18468.
- 113. L. Dekanovsky, B. Khezri, Z. Rottnerova, F. Novotny, J. Plutnar and M. Pumera, *Nature Machine Intelligence*, 2020, **2**, 711-718.
- 114. T. Xu, F. Soto, W. Gao, V. Garcia-Gradilla, J. Li, X. Zhang and J. Wang, *Journal of the American Chemical Society*, 2014, **136**, 8552-8555.
- 115. X. Lu, H. Shen, Y. Wei, H. Ge, J. Wang, H. Peng and W. Liu, *Small*, 2020, **16**, 2003678.
- 116. S. Rismani Yazdi, R. Nosrati, C. A. Stevens, D. Vogel, P. L. Davies and C. Escobedo, *Small*, 2018, 14, 1702982.

- 117. S.-J. Song, C. C. Mayorga-Martinez, J. Vyskočil, M. Castoralova, T. s. Ruml and M. Pumera, ACS Applied Materials & Interfaces, 2023, 15, 7023-7029.
- 118. Q. Li, H. Chen, X. Feng, C. Yu, F. Feng, Y. Chai, P. Lu, T. Song, X. Wang and L. Yao, *Small*, 2019, **15**, 1900427.
- 119. J. Xing, T. Yin, S. Li, T. Xu, A. Ma, Z. Chen, Y. Luo, Z. Lai, Y. Lv and H. Pan, Advanced Functional Materials, 2021, **31**, 2008262.
- 120. S. Schuerle, A. P. Soleimany, T. Yeh, G. Anand, M. Häberli, H. Fleming, N. Mirkhani, F. Qiu, S. Hauert and X. Wang, *Science Advances*, 2019, **5**, eaav4803.
- 121. S. Taherkhani, M. Mohammadi, J. Daoud, S. Martel and M. Tabrizian, ACS Nano, 2014, 8, 5049-5060.
- 122. M. M. Stanton, B.-W. Park, D. Vilela, K. Bente, D. Faivre, M. Sitti and S. Sánchez, ACS Nano, 2017, 11, 9968-9978.
- 123. B. Mostaghaci, O. Yasa, J. Zhuang and M. Sitti, *Advanced Science*, 2017, 4, 1700058.
- 124. Y. Alapan, O. Yasa, O. Schauer, J. Giltinan, A. F. Tabak, V. Sourjik and M. Sitti, Science Robotics, 2018, 3, eaar4423.
- 125. B.-W. Park, J. Zhuang, O. Yasa and M. Sitti, *ACS Nano*, 2017, **11**, 8910-8923.
- 126. M. Guix, R. Mestre, T. Patiño, M. De Corato, J. Fuentes, G. Zarpellon and S. Sánchez, *Science Robotics*, 2021, 6, eabe7577.
- 127. O. Aydin, X. T. Zhang, S. Nuethong, G. J. Pagan-Diaz, R. Bashir, M. Gazzola and M. T. A. Saif, *P Natl Acad Sci USA*, 2019, **116**, 19841-19847.
- 128. R. Raman, C. Cvetkovic, S. G. M. Uzel, R. J. Platt, P. Sengupta, R. D. Kamm and R. Bashir, *P Natl Acad Sci USA*, 2016, **113**, 3497-3502.
- 129. G. Go, S. G. Jeong, A. Yoo, J. Han, B. Kang, S. Kim, T. K. Nguyen, Z. Jin, C. S. Kim, Y. R. Seo, J. Y. Kang, J. Y. Na, E. K. Song, Y. Jeong, J. K. Seon, J. O. Park and E. Choi, *Science Robotics*, 2020, **5**, eaay6626.
- 130. X. Z. Chen, J. H. Liu, M. Dong, L. Müller, G. Chatzipirpiridis, C. Z. Hu, A. Terzopoulou, H. Torlakcik, X. P. Wang, F. Mushtaq, J. Puigmartí-Luis, Q. D. Shen, B. J. Nelson and S. Pané, *Mater Horiz*, 2019, **6**, 1512-1516.
- 131. J. Han, J. Zhen, V. D. Nguyen, G. Go, Y. Choi, S. Y. Ko, J. O. Park and S. Park, Scientific Reports, 2016, 6, 28717.
- 132. H. F. Xu, M. Medina-Sánchez, V. Magdanz, L. Schwarz, F. Hebenstreit and O. G. Schmidt, ACS Nano, 2018, 12, 327-337.
- 133. V. Magdanz, S. Sanchez and O. G. Schmidt, *Advanced Materials*, 2013, **25**, 6581-6588.
- 134. V. Magdanz, I. S. M. Khalil, J. Simmchen, G. P. Furtado, S. Mohanty, J. Gebauer, H. F. Xu, A. Klingner, A. Aziz, M. Medina-Sánchez, O. G. Schmidt and S. Misra, *Science Advances*, 2020, **6**, eaba5855.
- 135. H. F. Xu, M. Medina-Sánchez, W. N. Zhang, M. P. H. Seaton, D. R. Brison, R. J. Edmondson, S. S. Taylor, L. Nelson, K. Zeng, S. Bagley, C. Ribeiro, L. P. Restrepo, E. Lucena, C. K. Schmidt and O. G. Schmidt, *Nanoscale*, 2020, **12**, 20467-20481.
- 136. F. Rajabasadi, S. Moreno, K. Fichna, A. Aziz, D. Appelhans, O. G. Schmidt and M. Medina-Sánchez, *Advanced Materials*, 2022, **34**, 2204257.
- 137. F. Striggow, C. Ribeiro, A. Aziz, R. Nauber, F. Hebenstreit, O. G. Schmidt and M. Medina-Sanchez, Small, 2024, 20, 2310288.
- 138. F. Zhang, Z. Li, L. Yin, Q. Zhang, N. Askarinam, R. Mundaca-Uribe, F. Tehrani, E. Karshalev, W. Gao and L. Zhang, *Journal of the American Chemical Society*, 2021, **143**, 12194-12201.
- 139. F. Zhang, J. Zhuang, Z. Li, H. Gong, B. E.-F. de Ávila, Y. Duan, Q. Zhang, J. Zhou, L. Yin and E. Karshalev, *Nature Materials*, 2022, **21**, 1324-1332.
- 140. O. Yasa, P. Erkoc, Y. Alapan and M. Sitti, *Advanced Materials*, 2018, **30**, 1804130.
- 141. M. B. Akolpoglu, N. O. Dogan, U. Bozuyuk, H. Ceylan, S. Kizilel and M. Sitti, Advanced Science, 2020, 7, 2001256.

- 142. X. Yan, Q. Zhou, M. Vincent, Y. Deng, J. Yu, J. Xu, T. Xu, T. Tang, L. Bian and Y.-X. J. Wang, Science Robotics, 2017, 2, eaaq1155.
- 143. H. Wang, M. G. Potroz, J. A. Jackman, B. Khezri, T. Marić, N. J. Cho and M. Pumera, *Advanced Functional Materials*, 2017, 27, 1702338.
- 144. T. Maric, M. Z. M. Nasir, N. F. Rosli, M. Budanović, R. D. Webster, N. J. Cho and M. Pumera, *Advanced Functional Materials*, 2020, **30**, 2000112.
- 145. C. C. Mayorga-Martinez, M. Fojtů, J. Vyskočil, N. J. Cho and M. Pumera, Advanced Functional Materials, 2022, **32**, 2207272.
- 146. M. Sun, K. F. Chan, Z. Zhang, L. Wang, Q. Wang, S. Yang, S. M. Chan, P. W. Y. Chiu, J. J. Y. Sung and L. Zhang, *Advanced Materials*, 2022, **34**, 2201888.
- 147. Y. Zhang, K. Yan, F. Ji and L. Zhang, Advanced Functional Materials, 2018, 28, 1806340.
- 148. Y. Zhang, L. Zhang, L. Yang, C. I. Vong, K. F. Chan, W. K. Wu, T. N. Kwong, N. W. Lo, M. Ip and S. H. Wong, *Science Advances*, 2019, **5**, eaau9650.
- 149. D. Huska, C. C. Mayorga-Martinez, R. Zelinka and M. Pumera, *Small*, 2022, **18**, 2200208.
- 150. S.-J. Song, C. C. Mayorga-Martinez, D. Huska and M. Pumera, NPG Asia Materials, 2022, 14, 79.
- 151. W. Gao, S. Sattayasamitsathit, J. Orozco, J. Wang, Journal of the American Chemical Society, 2011, 133, 11862-11864.
- 152. J. Kim, C. C. Mayorga-Martinez and M. Pumera, *Nat. Commun.*, 2023, **14**, 935.
- 153. D. Zhou, Y. Gao, J. Yang, Y. C. Li, G. Shao, G. Zhang, T. Li, L. Li, *Advanced Science*, 2018, **5**, 1800122.
- 154. S. Ahmed, W. Wang, L. Bai, D. T. Gentekos, M. Hoyos, T. E. Mallouk, ACS Nano, 2016, 10, 4763-4769.
- 155. W. Wang, L. A. Castro, M. Hoyos, T. E. Mallouk, ACS Nano, 2012, 6, 6122-6132.