Supplementary Information

Progress and Challenges on Nitrous Oxide Decomposition and Valorization

Xuanhao Wut, a, Jiaxin Dut, a, Yanxia Gaot, a, Haiqiang Wanga, Changbin Zhangb,

Runduo Zhang^{*, c}, Hong He^{*, b}, Gaoqing (Max) Lu^{*, d}, and Zhongbiao Wu^{*, a}

^a Department of Environmental Engineering, Zhejiang University, China Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control, Hangzhou, 310058 P. R. China.

^b State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.

^c State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.

^d University of Surrey, GU2 7XH, Guildford, UK.

*Corresponding authors: E-mail: zhangrd@mail.buct.edu.cn, honghe@rcees.ac.cn, m.lu@surrey.ac.uk, zbwu@zju.edu.cn

Reaction type Catalyst Reaction conduction Reaction activity Ref. 200 ppm N₂O, 10% O₂, N₂ balance at S. Hinokuma, T. Iwasa, Y. Kon, T. $100 \text{ cm}^3 \text{ min}^{-1}$ and W/F = 5.0 × 10^{-4} T₅₀ = 329 °C Taketsugu and K. Sato, Catal. Commun., deN₂O (5 wt.%) Ir/ZrO₂ g·min·cm⁻³ 2021, 149, 106208... I. V. Yentekakis, G. Goula, P. 1000 ppm N₂O balanced with He, total Panagiotopoulou, S. Kampouri, M. J. deN₂O Ir/Al₂O₃ flow rate of 150 cm⁻³ min⁻¹, WHSV of $T_{100} \approx 480 \text{ }^{\circ}\text{C}$ Taylor, G. Kyriakou and R. M. Lambert, 180,000 cm³ q⁻¹ h⁻¹ Appl. Catal., B-Environ., 2016, 192, 357-364. E. Pachatouridou, E. Papista, A. Delimitis, M. A. Vasiliades, A. M. 1000 ppm N₂O balanced with He, Efstathiou, M. D. Amiridis, O. S. Alexeev, $T_{100} = 600 \,^{\circ}C$ deN₂O (0.5 wt.%) Ir/CeO₂-Al₂O₃ GHSV of 40000 h⁻¹ D. Bloom, G. E. Marnellos, M. Konsolakis and E. Iliopoulou, Appl. Catal., B-Environ., 2016, 187, 259-268. 30 vol.% N₂O in Ar, GHSV of 30, 000 ml S. Liu, Y. Cong, Y. Huang, X. Zhao and T. deN₂O (5 wt.%) Ir/TiO₂-Al₂O₃ T₁₀₀ = 350 °C Zhang, Catal. Today, 2011, 175, 264-270. $h^{-1} q_{cat}^{-1}$ N. Richards, J. H. Carter, E. Nowicka, L. A. Parker, S. Pattisson, Q. He, N. F. 1% N₂O balanced with He, total flow $r_{N20} = 10.3 \text{ mol}_{N20} \text{ h}_{-1} \text{ kg}_{\text{cat}}^{-1} \text{ at}$ Dummer, S. Golunski and G. J. deN₂O (2.6 wt.%) Pd/yAl₂O₃ rate of 100 mL min⁻¹. GHSV of 76 690 550 °C h⁻¹ Hutchings, Appl. Catal., B-Environ., 2020, 264, 118501. 1000 ppm N₂O balanced with He, total J. Dacquin, C. Dujardin and P. Granger, deN₂O (1 wt.%) Pd/LaCoO₃ flow rate of 15 L h⁻¹. GHSV of 10 000 T₅₀ = 433 °C J. Catal., 2008, 253, 37-49. h⁻¹ 200 ppm N₂O, 5% CO₂ balanced with S. Xie, D. Kim, K. Ye, L. Tetard and F. Liu, T₁₀₀ = 450 °C deN₂O Rh/CeO₂ Ar, WHSV of 100000 mL g⁻¹ h⁻¹ J. Rare Earth., 2023, 41, 941-951. Y. Li, A. Sundermann, O. Gerlach, K.-B. Low, C. C. Zhang, X. Zheng, H. Zhu and 200 ppm N₂O balanced with N₂, GHSV 98% N₂O conversion at 400 deN₂O Rh/CeO₂ °C S. Axnanda, Catal. Today, 2020, 355, of 30 000 h⁻¹ 608-619. 200 ppm N₂O balanced with N₂, WHSV 92% N₂O conversion at 400 H. Zhu, Y. Li and X. Zheng, Appl. Catal. deN₂O Aged Rh/CeO₂ of 250,000 cm³ g⁻¹ h⁻¹ °C A-Gen., 2019, 571, 89-95. Y. Jing, K. Taketoshi, N. Zhang, C. He, T. 1000 ppm N₂O, 10% O₂, 2% H₂O $r_{N20} = 2.40 \text{ mmol } \text{g}^{-1} \text{ h}^{-1} \text{ at } 350$ Toyao, Z. Maeno, T. Ohori, N. Ishikawa balanced with He, total flow rate of 100 deN₂O (5 wt.%) RhOx/ZrO₂ °C and K.-i. Shimizu. ACS Catal., 2022. 12. mL min⁻¹ 6325-6333. 66.1% N₂O conversion at 225 M.-J. Kim, H. J. Kim, S.-J. Lee, I.-S. Ryu, deN₂O Rh/Ce-ZrO₂ 500 ppm N₂O in N₂, GHSV = 45000 h^{-1} °C H. C. Yoon, K. B. Lee and S. G. Jeon, T₁₀₀ ≈ 300 °C Catal. Commun., 2019, 130, 105764. deN₂O Rh/CeZrOx 2200 ppm N₂O balanced with He, total T₁₀₀ = 450 °C C. Moreau, Á. Caravaca, P. Vernoux and

Table S1. Summary of representative studies on technologies for N₂O elimination.

flow rate of 10 L h⁻¹

S. Gil, ChemCatChem, 2020, 12, 3042-

				3049.
deN ₂ O	Ru/Al ₂ O ₃	500 ppm N ₂ O, GHSV of 11000 h^{-1}	T ₁₀₀ = 450 °C	Sui, F. Yuan, Z. Zhang, C. Zhang, X. Niu and Y. Zhu, <i>Catalysts</i> , 2016, 6 , 173.
deN ₂ O	RhO _x /Ag/Al ₂ O ₃	0.1% N ₂ O balanced with He, total flow rate of 100 mL min ⁻¹	T ₁₀₀ = 400 °C	Y. Jing, C. He, N. Zhang, Y. Murano, R. Toyoshima, H. Kondoh, Y. Kageyama, H. Inomata, T. Toyao and Ki. Shimizu, <i>ACS</i> <i>Catal.</i> , 2023, 13 , 12983-12993.
deN ₂ O	(1 wt.%) Rh/Zn–Al ₂ O ₃ -800	0.5% N ₂ O balanced with He, total flow rate of 60 mL min ⁻¹	T ₅₀ = 251 °C	C. Huang, Z. Ma, C. Miao, Y. Yue, W. Hua and Z. Gao, <i>RSC Adv.</i> , 2017, 7 , 4243- 4252.
deN ₂ O	(1 wt.%) Rh/La₁₀Si₀- _x FexO₂ァ-₅	0.5 vol.% N ₂ O balanced with He	T ₁₀₀ = 600 °C	N. Nunotani, R. Nagai and N. Imanaka, <i>Catal. Commun.</i> , 2016, 87 , 53-56.
deN ₂ O	(3.1 wt.%) RhOx/Ca–P–O	0.5 vol.% N ₂ O balanced with He, flow rate of 60 mL min ⁻¹	T ₁₀₀ = 300 °C	Y. Lin, T. Meng and Z. Ma, <i>J. Ind. Eng. Chem.</i> , 2015, 28 , 138-146.
deN ₂ O	(1 wt.%) Rh/Al-KIT-6	1700 ppm N ₂ O balanced with He, flow rate of 100 mL min ⁻¹ , GHSV = 26500 h ⁻¹	T ₅₀ = 350 °C, T ₉₀ = 375 °C	M. Hussain, D. Fino and N. Russo, <i>Chem. Eng. J.</i> , 2014, 238 , 198-205.
deN ₂ O	Rh/Mg/Al	1000 ppm N ₂ O balanced with N ₂ , GHSV of 6800 h^{-1}	T ₁₀₀ = 400 °C	P. H. Ho, M. Jabłońska, R. Palkovits, E. Rodríguez-Castellón, F. Ospitali, G. Fornasari, A. Vaccari and P. Benito, <i>Chem. Eng. J.</i> , 2020, 379 , 122259.
deN ₂ O	Fe@Rh/ SBA-15	10% №0, GHSV =5625 h ⁻¹	T ₁₀₀ = 400 °C	H. Chen, Q. Lu, C. Yi, B. Yang and S. Qi, <i>Phys. Chem. Chem. Phys.</i> , 2018, 20 , 5103-5111.
deN ₂ O	Au/Fe ₂ O ₃	1000 ppm N ₂ O balanced with He, total gas flow rate of 150 cm ³ min ⁻¹ , GHSV = 40 000 h ⁻¹	r _{№20} = 185 nmol m ⁻² s ⁻¹ at 700 ∘C	S. A. C. Carabineiro, E. Papista, G. E. Marnellos, P. B. Tavares, F. J. Maldonado-Hódar and M. Konsolakis, <i>Mol. Catal.</i> , 2017, 436 , 78-89.
deN ₂ O	RuO ₂	1.5 mbar N ₂ O in He, total gas flow of 50 ml STP min ⁻¹	T ₁₀₀ = 450 °C	M. Santiago, V. A. Kondratenko, E. V. Kondratenko, N. López and J. Pérez-Ramírez, <i>Appl. Catal., B-Environ.</i> , 2011, 110 , 33-39.
deN ₂ O	Ru/Al ₂ O ₃	500 ppm N ₂ O, GHSV of 11 000 h^{-1}	T ₁₀₀ = 450 °C	C. Sui, F. Yuan, Z. Zhang, C. Zhang, X. Niu and Y. Zhu. <i>Catalysts</i> . 2016. 6 , 173.
deN ₂ O	(1 wt.%) RuOx/Ca–P–O	0.5 vol.% N ₂ O balanced with He, total gas flow rate of 60 mL min ⁻¹	T ₁₀₀ = 400 °C	Y. Cui, H. Liu, Y. Lin and Z. Ma, <i>J. Taiwan</i> <i>Inst. Chem. E.</i> , 2016, 67 , 254-262.
deN ₂ O	RuO ₂ /r-TiO ₂	30 vol.% N ₂ O balanced with Ar, WHSV = 30 000 mL g_{cat} ⁻¹ h ⁻¹	$r_{\rm N2O}$ = 2.30 mol min ⁻¹ mol _{RuO2} ⁻¹ at 220 °C	Q. Lin, Y. Huang, Y. Wang, L. Li, X. Y. Liu, F. Lv, A. Wang, WC. Li and T. Zhang, <i>J.</i> <i>Mater. Chem. A</i> , 2014, 2 , 5178-5181.
deN ₂ O	Ag/Yb ₂ O ₃	1400 ppm N ₂ O, 900 ppm NO, total gas flow rate of 4–6 Ndm 3 h 1	83% N₂O conversion at 500 °C	M. Konkol, M. Kondracka, P. Kowalik, W. Próchniak, K. Michalska, A. Schwedt, C. Merkens and U. Englert, <i>Appl. Catal.</i> . B-

					Environ., 2016, 190 , 85-92. B. Bozorgi, J. Karimi-Sabet and P.
c	leN ₂ O	Pt-K/SiO ₂	2000 ppm of N ₂ O balanced with He,, GHSV = 15 000 h^{-1}	71% №O conversion at 600 °C	Khadiv-Parsi, <i>Environ. Technol. Inno.</i> , 2022, 26 , 102344.
C	leN ₂ O	Pt1/MgAl1.2Fe0.8O4	1000 ppm N ₂ O balanced with Ar, total gas flow rate of 33.3 mL min ⁻¹	T ₁₀₀ = 600 °C	K. Liu, Y. Tang, Z. Yu, B. Ge, G. Ren, Y. Ren, Y. Su, J. Zhang, X. Sun, Z. Chen, X. Liu, B. Qiao, WZ. Li, A. Wang and J. Li, <i>Sci. China Mater.</i> , 2020, 63 , 949-958.
c	deN ₂ O	Co ₃ O ₄	5% N_2O in He, total flow rate of 30 mL \mbox{min}^{-1}	T ₅₀ = 320 °C	P. Stelmachowski, K. Ciura and G. Grzybek, <i>Catal. Sci. Technol.</i> , 2016, 6 , 5554-5560.
c	deN ₂ O	Co ₃ O ₄	5% N_2O in He, total flow rate of 30 mL \mbox{min}^{-1}	T ₅₀ ≈ 375 °C	P. Stelmachowski, K. Ciura and G. Grzybek, <i>Catal. Sci. Technol.</i> , 2016, 6 , 5554-5560.
c	deN ₂ O	Co ₃ O ₄	5% N ₂ O in He, total flow rate of 30 mL min ⁻¹	T ₅₀ ≈ 360 °C	P. Stelmachowski, K. Ciura and G. Grzybek, <i>Catal. Sci. Technol.</i> , 2016, 6 , 5554-5560.
c	deN₂O	Co ₃ O ₄	0.1 mol % N ₂ O in N ₂ , total flow rate of 100 mL min ⁻¹ , WHSV = 60 m ³ kg ⁻¹ h ⁻¹	80% №O conversion at 450 °C	A. Klegova, A. Inayat, P. Indyka, J. Gryboś, Z. Sojka, K. Pacultová, W. Schwieger, A. Volodarskaja, P. Kuśtrowski, A. Rokicińska, D. Fridrichová and L. Obalová, <i>Appl. Catal., B-Environ.</i> , 2019, 255 , 117745.
c	leN ₂ O	Co ₃ O ₄	1000 ppm N ₂ O balanced with Ar, total flow rate of 50 mL min ⁻¹ , GHSV = 10000 h^{-1}	T ₅₀ = 460 °C, T ₉₀ = 520 °C	X. Hu, Y. Wang, R. Wu and Y. Zhao, <i>Mol.</i> <i>Catal.</i> , 2021, 509 , 111656.
c	deN ₂ O	Co ₃ O ₄	0.65 vol % N ₂ O, 0.88 vol % O ₂ , and N ₂ balance, GHSV of 55,000 h ⁻¹	T ₁₀ = 378 °C, T ₉₀ = 533 °C	J. Sun, A. Song, Y. Tian, H. Zhan, J. Deng, H. Wang and M. Ke, <i>ChemCatChem</i> , 2023, 15 , 1-10.
c	leN ₂ O	Co ₃ O ₄	1000 ppm N ₂ O balanced with Ar, GHSV = 10000 h^{-1}	T ₅₀ = 310 °C, T ₁₀₀ = 380 °C	Y. Wang, X. Hu, K. Zheng, X. Wei and Y. Zhao, <i>Catal. Commun.</i> , 2018, 111 , 70-74.
c	leN ₂ O	Co ₃ O ₄	1000 ppm N ₂ O balanced with Ar, GHSV = 10000 h^{-1}	T ₁₀₀ = 400 °C	Y. Wang, K. Zheng, X. Hu, W. Zhou, X. Wei and Y. Zhao, <i>Mol. Catal.</i> , 2019, 470 , 104-111.
c	deN ₂ O	3.0F-Co ₃ O ₄	2000 ppmv N ₂ O/Ar (with 5 vol % O ₂ , 100 ppmv NO and 2 vol% H ₂ O), GHSV = 20,000 h^{-1}	T ₉₀ = 371 ⁰C no impurity gas; T ₉₀ = 433 ⁰C	H. Yu, X. Qi, X. Du, Y. Pan, X. Feng, W. Shan and Y. Xiong, <i>Mol. Catal.</i> , 2023, 537 , 112960.
C	deN ₂ O	N-Co ₃ O ₄	1000 ppm N ₂ O in Ar, total flow rate of 50 mL min ⁻¹ , GHSV = 10000 h ⁻¹	T ₅₀ = 320 °C, T ₉₀ = 360 °C	X. Hu, Y. Wang, R. Wu and Y. Zhao, <i>Mol. Catal.</i> , 2021, 509 , 111656.
c	leN ₂ O	Pr _{0.06} -Doped Co ₃ O ₄	2000 ppm N ₂ O, GHSV = 60 000 mL \cdot g ⁻¹ ·h ⁻¹	T ₅₀ = 320 °C, T ₉₀ = 367 °C	H. Liu, S. Yang, G. Wang, H. Liu, Y. Peng, C. Sun, J. Li and J. Chen, <i>Environ. Sci.</i> <i>Technol.</i> , 2022, 56 , 16325-16335.
c	deN₂O	Na-Co ₃ O ₄	0.65 vol % N ₂ O, 0.88 vol % O ₂ , and	T ₁₀ = 322 °C	J. Sun, A. Song, Y. Tian, H. Zhan, J.

		N_2 balance, GHSV = 55,000 h ⁻¹		Deng, H. Wang and M. Ke, <i>ChemCatChem</i> , 2023, 15 , 1-10.
deN ₂ O	K/Co ₃ O ₄	500 ppm N ₂ O in N ₂ , GHSV = 45000 h^{-1}	T ₁₀₀ ≈ 360 °C	MJ. Kim, SJ. Lee, IS. Ryu, SH. Moon, MW. Jeon, C. H. Ko and S. G.
deN ₂ O	Cs/Co ₃ O ₄	1000 ppm N ₂ O, 3% O ₂ balanced with N ₂ , total flow rate of 100 mL min ⁻¹ , GHSV = 30000 h ⁻¹	More than 90% N₂O conversion at 300 °C	 Jeon, Catal. Lett., 2017, 147, 2000-2092. F. Zhao, D. Wang, X. Li, Y. Yin, C. Wang, L. Qiu, J. Yu and H. Chang, Ind. Eng. Chem. Res., 2022, 61, 13854-13862.
deN ₂ O	Gd _{0.06} Co	2000 ppmv N ₂ O in Ar, total flow rate of 50 mL min ⁻¹ , GHSV = 20000 h ⁻¹	T ₁₀₀ < 350 °C	Y. Xiong, Y. Zhao, X. Qi, J. Qi, Y. Cui, H. Yu and Y. Cao, <i>Environ. Sci. Technol.</i> , 2021, 55 , 13335-13344.
deN ₂ O	Sm-Co ₃ O ₄	1000 ppm N ₂ O in N ₂ , total flow rate of 100 mL min ⁻¹ , GHSV = 60000 h ⁻¹	T ₉₀ ≈ 375 °C	H. Liu, J. Chen, Y. Wang, S. Xiong, Z. Su, Y. Wang, W. Yang, X. Chu, W. Yang, Y. Peng, W. Si and J. Li, <i>Chem. Eng. J.</i> , 2021, 414 , 128643.
deN ₂ O	Alkaline-earth metal-modified A _{0.5} Co _{2.5} O ₄	0.65% N ₂ O, 0.88% O ₂ in N ₂ , total flow rate of 80 mL min ⁻¹ , GHSV = 55000 h ⁻¹	T ₁₀ = 378 °C, T ₉₀ = 533 °C (Co ₃ O ₄); T ₉₀ = 460 °C (A = Ba);	J. Sun, L. Wang, L. Zhang, Y. Zhao, Y. Chi, H. Wang, C. Li, J. Liu and J. Liu, <i>ACS Appl. Energy Mater.</i> , 2021, 4 , 8496-8505.
deN ₂ O	K _{0.01} Bi _{0.02} Co	2000 ppm N ₂ O in Ar, GHSV = 20000 h ⁻¹	55% N ₂ O conversion at 200 $^\circ\text{C}$	M. Tursun, B. Wang, Y. Jiang, H. Yu, X. Sun and X. Wang, <i>Chem. Res. Chinese 11</i> , 2016 32 , 418-422
deN ₂ O	SnO ₂ -Co ₃ O ₄	1000 ppm N ₂ O balanced with Ar, GHSV = 10000 h^{-1}	T ₁₀₀ = 360 °C	Y. Wang, X. Hu, K. Zheng, X. Wei and Y. Zhao, <i>Catal. Commun.</i> , 2018, 111 , 70-74.
deN ₂ O	NiO	2000 ppm N ₂ O balanced with He, total flow rate of 200 cm ³ min ⁻¹ , GHSV = 105000 h^{-1}	T ₅₀ = 392 °C, T ₉₀ = 467 °C	Z. Liu, Z. Zhou, F. He, B. Chen, Y. Zhao and Q. Xu, <i>Catal. Today</i> , 2017, 293-294 , 56-60
deN ₂ O	NiO	500 ppm N ₂ O in He, total flow rate of 200 mL min ⁻¹ , W/F value of 0.15 g s cm ⁻³	T ₅₀ = 409 °C, 70% N ₂ O conversion at 500 °C	B. Abu-Zied, S. Bawaked, S. Kosa and W. Schwieger, <i>Catalysts</i> , 2016, 6 , 70.
deN ₂ O	Gd/NiO	500 ppm N_2O in He, total flow rate of 200 mL min^1, W/F value of 0.15 g s cm $_3^{\rm o}$	T ₅₀ = 333 °C, T ₁₀₀ = 500 °C	Abu-Zied, S. Bawaked, S. Kosa and W. Schwieger, <i>Catalysts</i> , 2016, 6 , 70.
deN ₂ O	Bi _{0.1} NiO _{1.15}	200 ppm N ₂ O, 1% O ₂ balanced with N ₂ , total flow rate of 3.1 L min ⁻¹ , GHSV = 45000 h^{-1}	T ₅₀ = 328 °C, T ₉₀ = 385 °C	M. X. Xu, H. X. Wang, H. D. Ouyang, L. Zhao and Q. Lu, <i>J. Hazard. Mater.</i> , 2021, 401 , 123334.
deN ₂ O	Cd _{0.04} Ni	1000 ppm N ₂ O, % O ₂ balanced with N ₂ , GHSV= 30000 h^{-1}	T ₉₀ = 350 °C	F. Zhao, C. Wang, D. Wang, Y. Yin, J. Yu, J. Han, J. Zeng and H. Chang, <i>Appl. Catal. A-Gen.</i> , 2023. 649 , 118946.
deN2O	Sm _{0.06} Ni	2000 ppmv N ₂ O, 5 vol.% O ₂ , 100 ppmv NO, 5 vol.% H ₂ O balanced with Ar, total flow rate of 50 mL min ⁻¹ , GHSV = 20000 h^{-1}	T ₁₀₀ = 400 °C (when only 5 vol.% H ₂ O); 76 % N ₂ O conversion at 400 °C	J. Qi, X. Qi, Y. Pan, J. Cui, Y. Xiong, W. Shan and H. Yu, <i>Appl. Surf. Sci.</i> , 2023, 611 , 155657.
deN ₂ O	8% Ni/CeO ₂ -NR	 2% N₂O in He, GHSV = 19 000 h⁻¹	T ₅₀ = 350 °C	P. Zhao, F. Qin, Z. Huang, C. Sun, W.

				Shen and H. Xu, <i>Catal. Sci. Technol.</i> ,
deN ₂ O	NiO@CeO2-HPOC	2% N ₂ O in He, GHSV = 19 000 h^{-1}	T ₉₀ = 400 °C	P. Zhao, F. Qin, Z. Huang, C. Sun, W. Shen and H. Xu, <i>Chem. Eng. J.</i> , 2018, 349 , 72-81.
deN ₂ O	NiO@CeO2-HPOC	2% N ₂ O, 2% O ₂ in He, GHSV = 19 000 h^{-1}	T ₁₀₀ = 450 °C	P. Zhao, F. Qin, Z. Huang, C. Sun, W. Shen and H. Xu, <i>Chem. Eng. J.</i> , 2018, 349 , 72-81.
deN ₂ O	NiO/CeO2-C	2% N ₂ O in He, GHSV = 19 000 h^{-1}	T ₉₀ = 475 °C	P. Zhao, F. Qin, Z. Huang, C. Sun, W. Shen and H. Xu, <i>Chem. Eng. J.</i> , 2018, 349 , 72-81.
deN ₂ O	NiO/CeO ₂ -C	2% N ₂ O, 2% O ₂ in He, GHSV = 19 000 h^{-1}	T ₁₀₀ > 500 °C	P. Zhao, F. Qin, Z. Huang, C. Sun, W. Shen and H. Xu, <i>Chem. Eng. J.</i> , 2018, 349 , 72-81.
deN ₂ O	Cu/Si-Al hollow sphere	$0.5\%~N_2O$ in Ar, total flow rate of 50 mL min $^{-1}$	> 80% N₂O conversion at 400 ℃	T. Umegaki, M. Dobashi, T. Komuro and Y. Kojima, <i>New J. Chem.</i> , 2022, 46 , 11166-11173.
deN ₂ O	(10 wt.%) Fe/Al ₂ O ₃	1000 ppm N_2O in He, total flow rate of 60 \mbox{cm}^{-3} min $^{-1}$	T ₁₀₀ ≈ 650 °C	M. Haneda, M. Shinriki, Y. Nagao, Y. Kintaichi and H. Hamada, <i>Bull. Chem.</i> Soc. Inn. 2003. 76 , 2329-2333
deN ₂ O	Mn ₂ O ₃	P_{N20} = 0.066 atm, total flow rate of 30 mL min ⁻¹ , GHSV = 2000 h ⁻¹	<i>r</i> _{N2O} = 4.8 * 10 ⁻³ mol min ⁻¹ s ⁻¹ m ⁻² at 350 °C	T. Yamashita and A. Vannice, <i>J. Catal.</i> , 1996, 161 , 254-252.
deN ₂ O	Co ₃ O ₄ /m-ZrO ₂	1000 ppm N ₂ O in Ar, total flow rate of 50 mL min ⁻¹ , GHSV = 10000 h ⁻¹	Nearly 80% N_2O conversion at 400 $^\circ\text{C}$	X. Hu, Y. Wang, R. Wu, L. Zhao, X. Wei and Y. Zhao, <i>Appl. Surf. Sci.</i> , 2020, 514 , 145892.
deN ₂ O	Co ₃ O ₄ /m-ZrO ₂	1000 ppm N ₂ O, 3% O ₂ in Ar, total flow rate of 50 mL min ⁻¹ , GHSV = 10000 h^{-1}	$62\%~N_2O$ conversion at 400 $^\circ\text{C}$	X. Hu, Y. Wang, R. Wu, L. Zhao, X. Wei and Y. Zhao, <i>Appl. Surf. Sci.</i> , 2020, 514 , 145892.
deN ₂ O	Co ₃ O ₄ /m-ZrO ₂	1000 ppm N ₂ O, 3.3% H ₂ O in Ar, total flow rate of 50 mL min ⁻¹ , GHSV = 10000 h^{-1}	57% N_2O conversion at 400 $^\circ\text{C}$	X. Hu, Y. Wang, R. Wu, L. Zhao, X. Wei and Y. Zhao, <i>Appl. Surf. Sci.</i> , 2020, 514 , 145892
deN ₂ O	Co ₃ O ₄ /m-ZrO ₂	flow rate of 50 mL min ⁻¹ , GHSV = 10000 h^{-1}	69% N₂O conversion at 400 ℃	X. Hu, Y. Wang, R. Wu, L. Zhao, X. Wei and Y. Zhao, <i>Appl. Surf. Sci.</i> , 2020, 514 , 145892.
deN ₂ O	Ba _{0.2} Ce _{0.5} Cu	2000 ppmv N ₂ O in Ar, total flow rate of 50 mL min-1, GHSV = 20000 h^{-1}	T ₁₀₀ = 450 °C	Y. Li, X. Wang and C. Shi, <i>J. Environ.</i> <i>Chem. Eng.</i> , 2023, 11 , 109970.
deN ₂ O	Ba _{0.2} Ce _{0.5} Cu	2000 ppmv N ₂ O, 1000 ppmv NO in Ar, total flow rate of 50 mL min-1, GHSV = 20000 h^{-1}	T ₉₀ = 450 °C	Y. Li, X. Wang and C. Shi, <i>J. Environ.</i> <i>Chem. Eng.</i> , 2023, 11 , 109970.
deN ₂ O	Cu/Ce _{0.5} Y _{0.5}	450 ppm N ₂ O in N ₂ , total flow rate of 500 mL min ⁻¹	T ₁₀₀ = 500 °C	S. Choi, K. Bok Nam, H. Phil Ha and D. Wook Kwon, <i>J. Ind. Eng. Chem.</i> , 2023, 121 462-471
deN ₂ O	ZrO ₂ -Y ₂ O ₃	0.5 vol.% N ₂ O in He, total flow rate of	T ₁₀₀ ≈ 800 °C	CM. Cho, N. Nunotani and N. Imanaka,

CuO-Co ₃ O ₄	660 mL min ⁻¹ , weight/gas flow rate (W/F) ratio of 0.2 g s mL ⁻¹ 1000 ppm N ₂ O balanced with N ₂ , total flow rate of 100 mL min ⁻¹ , GHSV of 60 000 cm ³ g ⁻¹ h ⁻¹	T ₁₀₀ = 375 °C
Y ₂ O ₃ -Co ₃ O ₄	1000 ppm N ₂ O balanced with Ar, GHSV of 10000 h^{-1}	T ₁₀₀ = 360 °C
(Yb₁-xCox)₂O₃-ŏ	5000 ppm N ₂ O balanced with He, total flow rate of 60 mL min ⁻¹ , weight/gas flow rate (W/F) ratio of 0.2 g s mL ⁻¹	T ₁₀₀ = 500 °C
K/Y2O3-Co3O4	flow rate of 150 mL min ⁻¹ , GHSV = 12700 cm ³ g ⁻¹ h ⁻¹	T ₁₀₀ = 350 °C
PrBaCoO₃	1% N ₂ O in He, total flow rate of 100 mL min ⁻¹ , GHSV = 38 000 h ⁻¹	T ₅₀ = 410 °C
Co ₃ O ₄ /CeO ₂	1000 ppm N ₂ O, total flow rate of 150 cm ⁻³ min ⁻¹ , GHSV = 40000 h ⁻¹	T ₁₀₀ = 500 °C
CoCe _{0.05}	1000 ppm N ₂ O in Ar, flow rate of 150 cm ⁻³ min ⁻¹ , space velocity of 0.2 g s cm ⁻³	T ₁₀₀ ≈ 275 °C
Ce-Co-O	1000 ppm N ₂ O in He, total flow rate of 300 mL min ⁻¹ , GHSV = 80000 h^{-1}	T ₅₀ = 304 °C, T ₉₀ = 359 °C
K/Co-CeO ₂	500 ppm N ₂ O in N ₂ , GHSV of 45000 h ⁻ 1	T ₁₀₀ = 375 °C
K/Co ₃ O ₄ –CeO ₂	1000 ppm N ₂ O in Ar, flow rate of 150 cm ⁻³ min ⁻¹ , space velocity of 0.2 g s cm ⁻³	T ₁₀₀ ≈ 280 °C
Cs/Co ₃ O ₄ -CeO ₂	1000 ppm N ₂ O in Ar, flow rate of 150 cm ⁻³ min ⁻¹ , space velocity of 0.2 g s cm ⁻³	T ₁₀₀ ≈ 300 °C
NiO-CeO ₂	2000 ppm N ₂ O balanced with He, total flow rate of 200 cm ³ min ⁻¹ , GHSV of 105000 b ⁻¹	T ₅₀ = 367 °C, T ₉₀ = 424 °C
CuO/CeO ₂	2500 ppm N ₂ O in Ar, total flow rate of 100 mL min ⁻¹ , WHSV of 120 L g_{cat} ⁻¹ h ⁻¹	T ₅₀ ≈ 420 °C
	CuO-Co ₃ O ₄ Y ₂ O ₃ -Co ₃ O ₄ (Yb1-xCox)2O3-ō K/Y2O3-Co3O4 PrBaCoO3 PrBaCoO3 Co3O4/CeO2 CoCe0.05 Ce-Co-O K/Co-CeO2 K/Co3O4-CeO2 Cs/Co3O4-CeO2 NiO-CeO2 NiO-CeO2	660min ⁻¹ , weight/gasflow rate (W/F) ratio of 0.2 g s mL-1 1000 ppm N ₂ O balanced with N ₂ , total flow rate of 100 mL min ⁻¹ , GHSV of 60 000 cm ³ g ⁻¹ h ⁻¹ Y ₂ O ₃ -Co ₃ O ₄ 1000 ppm N ₂ O balanced with Ar, GHSV of 10000 h ⁻¹ (Yb _{1-x} Cox) ₂ O ₃₋₅ 5000 ppm N ₂ O balanced with He, total flow rate of 60 mL min ⁻¹ , weight/gas flow rate of 60 mL min ⁻¹ , weight/gas flow rate (W/F) ratio of 0.2 g s mL ⁻¹ 1000 ppm N ₂ O balanced with Ar, total flow rate of 150 mL min ⁻¹ , GHSV = 12700 cm ³ g ⁻¹ h ⁻¹ PrBaCoO ₃ 1% N ₂ O in He, total flow rate of 100 mL min ⁻¹ , GHSV = 38 000 h ⁻¹ Co ₃ O ₄ /CeO ₂ 1000 ppm N ₂ O, total flow rate of 150 cm ⁻³ min ⁻¹ , GHSV = 40000 h ⁻¹ CoCe _{0.05} cm ⁻³ min ⁻¹ , space velocity of 0.2 g s cm 3Ce-Co-O1000 ppm N ₂ O in He, total flow rate of 150 cm ⁻³ min ⁻¹ , space velocity of 0.2 g s cm 3K/Co-CeO ₂ 500 ppm N ₂ O in Ar, flow rate of 150 cm ⁻³ min ⁻¹ , space velocity of 0.2 g s cm 3K/Co ₃ O ₄ -CeO ₂ 1000 ppm N ₂ O in Ar, flow rate of 150 cm ⁻³ min ⁻¹ , space velocity of 0.2 g s cm 3NiO-CeO ₂ 2000 ppm N ₂ O in Ar, flow rate of 150 cm ⁻³ min ⁻¹ , space velocity of 0.2 g s cm 3NiO-CeO ₂ 2000 ppm N ₂ O in Ar, flow rate of 150 cm ⁻³ min ⁻¹ , space velocity of 0.2 g s cm 3NiO-CeO ₂ 2000 ppm N ₂ O in Ar, flow rate of 150 cm ⁻³ min ⁻¹ , space velocity of 0.2 g s cm 3NiO-CeO ₂ 2000 ppm N ₂ O in Ar, flow rate of 150 cm ⁻³ min ⁻¹ , space velocity of 0.2 g s cm 3NiO-CeO ₂ 2000 ppm N ₂ O in Ar, flow rate of 150 cm ⁻³ min ⁻¹ , Space velocity of 0.2 g s cm 3

J. Asian Ceram. Soc., 2019, 7, 518-523. S. Xiong, J. Chen, N. Huang, S. Yang, Y. Peng and J. Li, Environ. Sci. Technol., 2019, 53, 10379-10386. Y. Wang, K. Zheng, X. Hu, W. Zhou, X. Wei and Y. Zhao, Mol. Catal., 2019, 470, 104-111. C.-M. Cho, N. Nunotani and N. Imanaka, Bull. Chem. Soc. Jpn., 2019, 92, 1148-1153. T. Zhao, Y. Li, Q. Gao, Z. Liu and X. Xu, Catal. Commun., 2020, 137, 105948. N. Richards, J. H. Carter, L. A. Parker, S. Pattisson, D. G. Hewes, D. J. Morgan, T. E. Davies, N. F. Dummer, S. Golunski and G. J. Hutchings, ACS Catal., 2020, 10, 5430-5442. M. Lykaki, E. Papista, N. Kaklidis, S. Carabineiro and M. Konsolakis, Catalysts, 2019, 9, 233. L. Xue, C. Zhang, H. He and Y. Teraoka, Appl. Catal., B-Environ., 2007, 75, 167-174. Y. You, H. Chang, L. Ma, L. Guo, X. Qin, J. Li and J. Li, Chem. Eng. J., 2018, 347, 184-192. M.-J. Kim, S.-J. Lee, I.-S. Ryu, M.-W. Jeon, S.-H. Moon, H.-S. Roh and S. G. Jeon, Mol. Catal., 2017, 442, 202-207. L. Xue, C. Zhang, H. He and Y. Teraoka, Catal. Today, 2007, 126, 449-455. L. Xue, H. He, C. Liu, C. Zhang and B. Zhang, Environ. Sci. Technol., 2009, 43, 890-895. Z. Liu, Z. Zhou, F. He, B. Chen, Y. Zhao and Q. Xu, Catal. Today, 2017, 293-294, 56-60. M. Zabilskiy, I. Arčon, P. Djinović, E. Α. Tchernychova and Pintar,

deN2O	Co ₃ O ₄ /70Mg30Al	1000 ppm N ₂ O in N ₂ , GHSV = 10 L h^{-1} g ⁻¹	T ₁₀₀ =425 °C	<i>ChemCatChem</i> , 2021, 13 , 1814-1823. A. Klegová, K. Pacultová, D. Fridrichová, A. Volodarskaja, F. Kovanda and K. Jirátová, <i>Chem. Eng. Technol.</i> , 2017, 40 , 981-990.
deN ₂ O	K or Cs doped Zn _{0.4} Co _{2.6} O ₄ Al ₂ O ₃	5% N ₂ O in He, total flow rate of 30 mL min ⁻¹ , GHSV = 7000 h ⁻¹	T₅0 ≈ 350 °C	K. Ciura, G. Grzybek, S. Wójcik, P. Indyka, A. Kotarba and Z. Sojka, <i>React.</i> <i>Kinet. Cat.</i> , 2017, 121 , 645-655. G. Grzybek, S. Wójcik, P. Legutko, J.
deN ₂ O	K-Co _{2.6} Zn _{0.4} O ₄ α-Al ₂ O ₃	5% N ₂ O in He, GHSV of 7000 h^{-1}	T ₁₀₀ ≈ 500 °C	Gryboś, P. Indyka, B. Leszczyński, A. Kotarba and Z. Sojka, <i>Appl. Catal., B-Environ.</i> , 2017, 205 , 597-604.
deN ₂ O	$Cu-Zn/\gamma-Al_2O_3$	12 vol.% N ₂ O, 16.8 vol.% O ₂ in N ₂ , total flow rate of 120 mL min ⁻¹ , GHSV of 7200 h ⁻¹	T ₁₀₀ = 601 °C	R. Zhang, C. Hua, B. Wang and Y. Jiang, <i>Catalysts</i> , 2016, 6 , 200.
deN ₂ O	Cu–Zn/ZnAl ₂ O ₄	8.1 vol.% N ₂ O, 10.2 vol.% O ₂ in N ₂ , total flow rate of 1200 mL min ⁻¹ , GHSV = 1200 h^{-1}	T ₁₀₀ = 650 °C	X. Zheng, R. Zhang, F. Bai and C. Hua, <i>Catalysts</i> , 2017, 7 , 166.
deN ₂ O	MgCo ₂ O ₄	500 ppm N ₂ O, total flow rate of 200 cm 3 min 1	$T_{50} = 467 \text{ °C}; 67\% \text{ N}_2\text{O}$ conversion at 500 °C $T_{50} = 405 \text{ °C} (1 \text{ i-});$	B. M. Abu-Zied, Chinese <i>J. Catal.</i> , 2011, 32 , 264-272.
deN ₂ O	Alkali promoted MgCo ₂ O ₄	500 ppm N ₂ O, total flow rate of 200 cm 3 min 1	$T_{50} = 374 ^{\circ}C (Na-);$ $T_{50} = 308 ^{\circ}C (K-);$ $T_{50} = 332 ^{\circ}C (Cs-)$	B. M. Abu-Zied, Chinese <i>J. Catal.</i> , 2011, 32 , 264-272.
deN ₂ O	Co ₃ O ₄ /MgO–Al ₂ O ₃	2000 ppmv N ₂ O in Ar, total flow rate of 50 mL min ⁻¹	T ₁₀₀ ≈ 600 °C	Y. Li and X. Wang, <i>Catal. Lett.</i> , 2019, 149 , 1856-1863.
deN ₂ O	Mg _{0.9} Co _{0.1} Co ₂ O ₄	10 mol% N ₂ O in He, total flow rate of 35 mL min ⁻¹ , GHSV of 21200 h ⁻¹	<i>r</i> _{№20} = 30.6-38.9 mmol g ⁻¹ h ⁻¹ at 380 – 400 °C	U. Chellam, Z. P. Xu and H. C. Zeng, <i>Chem. Mater</i> , 2000, 12 , 650-658.
deN ₂ O	Mn _{0.1725} Co ₃ AIO _x	0.1% N ₂ O in N ₂ , total flow rate of 100 cm ⁻³ min ⁻¹ , WHSV of 17 L h ⁻¹ g ⁻¹	T ₅₀ = 305 °C T ₁₀₀ = 400 °C	Delahay, C. Petitto, M. Nocuń and R. Palkovits, <i>Appl. Catal., B-Environ.</i> , 2019, 243 , 66-75.
deN ₂ O	CoFe ₂ O ₄	$1\%~N_2O$ in $N_2,~GHSV$ of 20000 $h^{\text{-}1}$	98.1% N₂O conversion at 475 ℃	K. Denisova, A. A. Ilyin, R. Rumyantsev, J. Sakharova, A. P. Ilyin and N. Gordina, <i>Catalysts</i> , 2021, 11, 889.
deN ₂ O	LaFeO ₃	100% №O, GHSV of 10 000 h ⁻¹	T ₁₀₀ = 700 °C	E. M. Kostyuknin, A. L. Kustov, N. V. Evdokimenko, A. I. Bazlov and L. M. Kustov, <i>J. Am. Ceram. Soc.</i> , 2020, 104 , 492-503.
deN ₂ O	La _{0.75} Sr _{0.25} FeO ₃	60.0 cm ³ min ⁻¹ with ratio N ₂ O:He =10:90	T ₁₀₀ = 575 °C	A. G. Margellou, T. C. Vaimakis, P. J. Pomonis and D. E. Petrakis, <i>React. Kinet.</i> Cat. 2019 127 825-838
deN ₂ O	LaCo _{0.8} Fe _{0.2} O ₃	$0.1 \ vol.\% \ N_2O, \ 5 \ vol.\% \ NO, \ 6 \ vol.\% \ O_2,$	T ₅₀ = 563 °C	Y. Wu, X. Ni, A. Beaurain, C. Dujardin and

deN ₂ O	10 wt.% Fe ₂ O ₃ -ZrO ₂	15 vol.% H ₂ O in He, total flow rate of 15 L h^{-1} , GHSV of 30000 h^{-1} 1000 ppm N ₂ O in He, total flow rate of 150 cm ⁻³ min ⁻¹ , weight/gas flow rate (W/F) ratio of 0.2 g s mL ⁻¹	Nearly 95% N₂O conversion at 550 °C	P. Granger, <i>Appl. Catal., B-Environ.</i> , 2012, 125 , 149-157. S. N. Basahel, M. Mokhtar, T. T. Ali and K. Narasimharao, <i>Catal. Today</i> , 2020, 348 , 166-176.
deN ₂ O	K doped Co-Mn-Al mixed oxide	$0.1\%~\text{N}_2\text{O}$ in He, GHSV of 40380 $\text{h}^{\text{-1}}$	T ₁₀₀ = 420 °C	L. Obalová, K. Karásková, K. Jirátová and F. Kovanda, <i>Appl. Catal., B-Environ.</i> , 2009, 90 , 132-140.
deN ₂ O	Co–Mn–Al mixed oxide	1000 ppm N_2O in He, total flow rate of 100 mL min $^{-1}$	More than 80% N₂O conversion at 420 ºC	L. Obalová, K. Pacultová, J. Balabánová, K. Jirátová, Z. Bastl, M. Valášková, Z. Lacný and F. Kovanda, <i>Catal. Today</i> , 2007, 119 , 233-238.
deN ₂ O	Co₃O₄ on open-cell metallic foam	1000 ppm N ₂ O in N ₂ , total flow rate of 80 mL min ⁻¹ , GHSV of 6800 h ⁻¹	T ₅₀ = 460 °C	M. Jabłońska, F. Ospitali, F. Di Renzo, G. Delahay, G. Fornasari, A. Vaccari, R. Palkovits and P. Benito, <i>Chem. Eng. Res. Des.</i> , 2022, 188 , 166-178.
deN₂O	Co₄MnAlOx/SiC-s.m	0.1 mol % N ₂ O in N ₂ , total flow rate of 700 mL min ⁻¹ , GHSV of 3000 m ³ m _{bed} ⁻³ h ⁻¹	40% №O conversion at 450 °C	A. Klegova, A. Inayat, P. Indyka, J. Gryboś, Z. Sojka, K. Pacultová, W. Schwieger, A. Volodarskaja, P. Kuśtrowski, A. Rokicińska, D. Fridrichová and L. Obalová, <i>Appl. Catal., B-Environ.</i> , 2019, 255 , 117745.
deN ₂ O	Co₃O₄-Cs on an open-cell foam	1000 ppm N ₂ O in N ₂ and VHSV = 1500 m ³ m _{bed} ⁻³ h ⁻¹ ; or 1000 ppm N ₂ O, 2 mol % H ₂ O, 5 mol % O ₂ , 200 ppm NO in N ₂ and VHSV = 510 m ³ m _{bed} ⁻³ h ⁻¹	$>87\%~N_2O$ conversion at 450 $^{\circ}C$	A. Klegova, K. Pacultová, T. Kiška and L. Obalová, <i>Ind. Eng. Chem. Res.</i> , 2023, 62 , 1301-1309.
deN₂O	Co ₃ O ₄ -Cs (1 wt.%) on ceramic open-cell foams	1000 ppm N_2O in N_2 and GHSV = $1500011_{\text{bed}}\text{-}^3h\text{-}1$	> 90% N ₂ O conversion at 450 °C	K. Pacultová, A. Klegova, T. Kiška, D. Fridrichová, A. Martaus, A. Rokicińska, P. Kuśtrowski and L. Obalová, <i>Mater. Res. Bull.</i> , 2020, 129 , 110892.
deN₂O	Co-Cs/MgOc/Al ₂ O ₃	0.1 mol.% N ₂ O in N ₂ , GHSV = 1500 m ³ m ³ bed $^{-1}$ h ⁻¹	More than 90% N₂O conversion at 450 °C	A. Klegova, K. Pacultova, I. Klska, P. Peikertová, A. Rokicińska, P. Kuśtrowski and L. Obalová, <i>Mol. Catal.</i> , 2022, 533 , 112754.
deN ₂ O	Co ₃ O ₄ α-Al ₂ O ₃ cordierite	5% N ₂ O in He, total flow rate of 30 mL min ⁻¹ , GHSV = 1600 h ⁻¹	More than 80% N₂O conversion at 500 °C	S. Wójcik, G. Ercolino, M. Gajewska, C. W. M. Quintero, S. Specchia and A. Kotarba, <i>Chem. Eng. J.</i> , 2019, 377 , 120088.
deN ₂ O	K-Pb-Co₃O₄ α- Al₂O₃ cordierite	5% N_2O in He, total flow rate of 30 mL min^1, GHSV = 7000 $h^{\text{-}1}$	More than 80% N₂O conversion at 400 °C	S. Wójcik, P. Indyka, Z. Sojka and A. Kotarba, <i>Catal. Today</i> , 2020, 348 , 111-117
deN ₂ O	K-Zn _{0.4} Co _{2.6} O ₄ α-	1.5% N ₂ O, 1% NOx, 1% H ₂ O, 2.0% O ₂	More than 90% N ₂ O	S. Wójcik, G. Grzybek, J. Gryboś, A.

	Al ₂ O ₃ cordierite	in He, total flow rate of 90 mL min ⁻¹	conversion at T < 400 °C	Kotarba and Z. Sojka, <i>Catal. Commun.</i> , 2018, 110 , 64-67.
deN ₂ O	NiCoAl/SiC	20 vol.% N ₂ O in Ar, WHSV = 5 h ⁻¹ or 20 h^{-1}	T ₁₀₀ = 420 °C (20 h ⁻¹); T ₁₀₀ = 340 °C (5 h ⁻¹)	O. Muccioli, E. Meloni, S. Renda, M. Martino, F. Brandani, P. Pullumbi and V. Palma, <i>Processes</i> , 2023, 11 , 1511.
deN ₂ O	Fe-BEA monolith catalysts	N_2O : He: O_2 = 35: 60: 5, GHSV = 4000 h^{-1}	T ₁₀₀ ≈ 500 °C	R. Zhang, K. Hedjazi, B. Chen, Y. Li, Z. Lei and N. Liu, <i>Catal. Today</i> , 2016, 273 , 273-285.
deN ₂ O	Fe/ZSM-5	0.3 mbar N ₂ O, 60 mbar O ₂ , 0.1 mbar NO, 0.14 mbar CO, 0.1 mbar SO ₂ , and 100 mbar H ₂ O in He, W/F°(N ₂ O) of 1245 g h mol ⁻¹	T ₁₀₀ ≈ 650 °C	M. Santiago, M. A. G. Hevia and J. Pérez- Ramírez, <i>Appl. Catal., B-Environ.</i> , 2009, 90 , 83-88.
deN ₂ O	Fe-ZSM-5	1.2 vol.% N ₂ O in He, total flow rate of 20 mL min ⁻¹	T ₁₀₀ = 525 °C	X. Liang, H. Tang, F. Yang, G. Tu, F. Zhang, Q. Xiao, Y. Zhong and W. Zhu, <i>Micropor. Mesopor. Mat.</i> , 2019, 290 , 109655.
deN ₂ O	Fe-ZSM-5	1500 ppm N ₂ O in Ar, GHSV = 35000 h ⁻¹	T ₉₀ = 620 °C	G. He, B. Zhang, H. He, X. Chen and Y. Shan, <i>Sci Total Environ</i> , 2019, 673 , 266-271.
deN ₂ O	Fe/ZSM-5	$0.15 \text{ vol.}\%\text{N}_2\text{O} \text{ in He, GHSV} = 35000 \text{ h}^{-1}$	more than 90% № conversion at 525 °C	B. Zhang, F. Liu, H. He and L. Xue, <i>Chinese J. Catal.</i> , 2014, 35 , 1972-1981.
deN ₂ O	Fe-ZSM-5	5% O ₂ , 5000 ppm N ₂ O in Ar, total flow rate of 200 mL min ⁻¹ , GHSV = 30000 h ⁻¹	75% of conversion at 500 °C	Hao, Q. Shen, W. Wei, G. Qian and Y. Sun, <i>Chinese J. Catal.</i> , 2016, 37 , 898-907.
deN ₂ O	Fe-ZSM-5	500 ppm N_2O in He; total flow rate of 125 $\mbox{cm}^3\mbox{ min}^{-1}$	T ₁₀₀ ≈ 450 °C	B. M. Abu-Zied, W. Schwieger and A. Unger, <i>Appl. Catal., B-Environ.</i> , 2008, 84 , 277-288.
deN ₂ O	Co/Beta	30 vol % №O, GHSV = 30 000 h ⁻¹	About 99.6% of conversion at 450 °C	B. Kang, R. Zhang, M. Guo, X. Guo, Z. Di, Y. Wei and J. Jia, <i>Energy Fuels</i> , 2023, 37 , 18019-18029.
deN ₂ O	Fe-beta	5% O ₂ , 5000 ppm N ₂ O in Ar, total flow rate of 200 mL min ⁻¹ , GHSV = 30000 h ⁻¹	T ₉₀ = 425 °C	M. Wu, H. Wang, L. Zhong, X. Zhang, Z. Hao, Q. Shen, W. Wei, G. Qian and Y. Sun, <i>Chinese J. Catal.</i> , 2016, 37 , 898-907.
deN ₂ O	Co-ZSM-5	30% N ₂ O in He, total flow rate of 80 mL min ⁻¹ , GHSV = 30000 h ⁻¹	More than 90% of conversion at 500 °C	B. Kang, M. Li, Z. Di, X. Guo, Y. Wei, J. Jia and R. Zhang, <i>Catal. Today</i> , 2022, 402 , 17-26.
deN ₂ O	Cu/ZSM-5	1 vol.% N ₂ O in He, GHSV = 12000 h^{-1}	T ₅₀ = 368 °C	G. A. Zenkovets, R. A. Shutilov, V. I. Sobolev and V. Y. Gavrilov, <i>Catal.</i>
deN ₂ O	CuZSM-5	1 vol.% N ₂ O in He, GHSV = 6000 h^{-1}	T ₅₀ = 520 °C T ₁₀₀ = 580 °C	S. A. Yashnik, A. V. Salnikov, N. T. Vasenin, V. F. Anufrienko and Z. R.

				Ismagilov, <i>Catal. Today</i> , 2012, 197 , 214-
				G. Sádovská. E. Tabor. P. Sazama. M.
deN ₂ O	Fe-FER	1000 ppm N ₂ O, 0.5% NO, 2% O ₂ , 10% $H_{2}O$ and He, CHSV = 3.5 x 10 ⁵ h ⁻¹	T ₁₀₀ = 600 °C	Lhotka, M. Bernauer and Z. Sobalík,
		120 and $11e$, $0130 - 5.5 \times 10^{-11}$		Catal. Commun., 2017, 89, 133-137.
		1000 ppm N ₂ O, 0.5% NO, 2% O ₂ and	T 105 00	G. Sádovská, M. Bernauer, B. Bernauer,
dein ₂ O	Fe-FER	10% H ₂ O in He, GHSV = 3.5 × 10 ⁵ h ⁻¹	$1_{50} = 435$ °C	E. Iapor, A. Vondrova and Z. Sobalik,
		500 ppm N ₂ O, 5% H ₂ O and Ar, total flow		T. Zhang, Y. Qiu, G. Liu, J. Chen, Y. Peng.
deN₂O	Fe/CHA	rate of 200 mL min ⁻¹ , GHSV ≈ 400000	More than 80% of conversion	B. Liu and J. Li, <i>J. Catal.</i> , 2020, 392 , 322-
		h ⁻¹	at 600 °C	335.
		1500 ppm N ₂ O in He, total flow rate of	T ₅₀ = 397 °C	L. Li, Q. Shen, J. Li, Z. Hao, Z. P. Xu and
deN ₂ O	Fe-FAU	60 mL min^{-1} , GHSV = 30000 h^{-1}	T ₁₀₀ = 477 °C	G. Q. M. Lu, Appl. Catal. A-Gen., 2008,
		1000 ppm NoO 1% Oo in He CHSV -		344 , 131-141. I B Lim S H Cha and S B Hong App/
deN ₂ O	Fe-PST-7(HS)	42000 h ⁻¹	T ₅₀ = 710 K	Catal B-Environ 2019 243 750-759
		12000 11		N. Labhsetwar, M. Dhakad, R. Biniwale,
		5000 ppm NoO in He, total flow rate of		T. Mitsuhashi, H. Haneda, P. S. S. Reddy,
deN ₂ O	Ru + Co/US-Y	60 mLmin^{-1} , GHSV = 36000 h^{-1}	T ₉₀ = 310 °C	S. Bakardjieva, J. Subrt, S. Kumar, V.
				Kumar, P. Saiprasad and S. Rayalu,
				Catal. 100ay, 2009, 141, 205-210.
deN ₂ O	Ma-Al-Fe-I DHs	1000 ppm N ₂ O, GHSV = 2:17 cm ³ _{NTP}	More than 80% N ₂ O	Lázár, Chem, Eng. J., 2012, 207-208
		g _{cat} -' s-'	conversion at 500 °C	913-922.
		200 ppm N ₂ O in N ₂ total flow rate of	T ₅₀ = 305 °C	H. Tang, Y. He, P. Liu, J. Shao, F. Lin and
deN ₂ O	Co/CoO _x @Carbon	300 mL min^{-1} . GHSV = 30000 h^{-1}	$T_{100} \approx 400 \text{ °C}$	Z. Wang, <i>Energy Fuels</i> , 2021, 35 , 18664-
		1000 nom N.O. in Ar. total flow rate of		18679. X Wei X Weng X Li D Wu and X
deN ₂ O	Co/nHAP	$75 \text{ mL} \text{ min}^{-1} \text{ GHSV} = 15000 \text{ h}^{-1}$	T ₁₀₀ = 460 °C	Λ , well, f. wally, Λ . Li, R. wu allo f. Zhao <i>Mol Catal</i> 2020 49 1 111005
		$2000 \text{ ppmv } N_2O \text{ in Ar, GHSV} = 20000$	T 100.00	H. Yu, X. Wang and X. Wu, <i>Mol. Catal.</i> ,
deN ₂ O	Co ₃ O ₄ /BaCO ₃	h ⁻¹	$I_{100} = 400 {}^{\circ}C$	2018, 460 , 69-73.
deN2O		2000 ppmv N ₂ O in Ar, GHSV = 20 000	$T_{100} = 300 \ ^{\circ}C$	H. Yu, X. Wang and Y. Li, Catal. Today,
		h^{-1}		2020, 339 , 274-280.
deN ₂ O	Co ₃ O ₄ /g-CN	$50 \text{ m} \text{ min}^{-1} \text{ GHSV} = 10000 \text{ h}^{-1}$	T ₁₀₀ = 400 °C	A. Hu, Y. Walig, R. Wu and Y. Zhao, Appl. Surf. Sci. 2021 538 148157
		$0.5 \text{ vol.}\% \text{ N}_2\text{O}$ in He, total flow rate of		Y. Cui, H. Liu, Y. Lin and Z. Ma, J. Taiwan
deN ₂ O	RuOx/HAP	60 mL min^{-1}	T ₁₀₀ = 400 °C	Inst. Chem. E., 2016, 67 , 254-262.
		2500 ppm N₂O, 2500 ppm H₂, balanced	More than 80% N₂O	J. Arenas-Alatorre, A. Gómez-Cortés, M.
H ₂ -SCR	Ni-Pt/SiO ₂	by He, GHSV = 25000 h^{-1}	conversion at 350 K	Avalos-Borja and G. Díaz, <i>J. Phys.</i>
		$N_{\rm e}O$ (1.5 mbor) $H_{\rm e}$ (1.5 mbor)		Cnem. B, 2005, 109 , 23/1-23/6.
H ₂ -SCR	RuO ₂	balanced by He, other conditions: W/F	100% N ₂ O conversion at 625	Kondratenko, N. López and J. Pérez-
		$(N_2O) = 498 \text{ g h mol}^{-1}$	К	Ramírez, Appl. Catal., B-Environ., 2011,

CO-SCR	Fe(97)-BEA	0.2% N ₂ O, 0.2% CO, 3% O ₂ , ramp = 10 K/min ⁻¹ , GHSV = 35000 h ⁻¹	More than 95% N₂O conversion at 480 °C	110 , 33-39. G. Delahay, M. Mauvezin, A. Guzman- Vargas and B. J. C. C. Coq, <i>Catal.</i> <i>Commun.</i> , 2002, 3 , 385-389.
CO-SCR	0.2 wt% Rh/Al ₂ O ₃	CO and N ₂ Oof 5×10^{-3} atm and a space velocity of 25,000 h ⁻¹	T ₅₀ = 295 °C	P. Granger, <i>J. Catal.</i> , 2004, 223 , 142-151.
CO-SCR	Co–Pd–Al (1/0.1/1) htlc	12,500 ppm N ₂ O, 17,500 ppm CO, GHSV = 30000 h^{-1}	More than 95% N₂O conversion at 200 °C	K. S. Chang, HJ. Lee, YS. Park and J W. Woo, <i>Appl. Catal. A-Gen.</i> , 2006, 309 , 129-138.
CO-SCR	Fe-ZSM-5	1.5 mbar of N ₂ O and 1.5 mbar of CO with He as balance, GHSV = 90000 h^{-1}	More than 90% N ₂ O conversion at 427 °C	M. N. Debbagh, C. S. M. d. Lecea and J. Pérez-Ramírez, <i>Appl. Catal., B-Environ.</i> , 2007, 70 , 335-341.
CO-SCR	Co–Mn–Al spinel	0.1 mol% N ₂ O, 0.15 mol% CO, balanced by He, 330 mL/min, .0.33 g of catalyst	More than 95% N₂O conversion at 350 °C	K. Pacultová, L. Obalová, F. Kovanda and K. Jirátová, <i>Catal. Today</i> , 2008, 137 , 385-389.
CO-SCR	0.5 wt% Rh/SiO ₂	1927 ppm N ₂ O, 1980 ppm CO over 75 mg of 0.5 wt% Rh/SiO ₂ , balance He with total flow rate of 100 cm ³ (STP)/min	More than 95% N ₂ O conversion at 350 °C	N. W. Cant, C. C. Dean, and O. L. Irene, <i>J. Catal.</i> 2011 , <i>278</i> , 162-166.
CO-SCR	Synthetic coal char M6	420 μ L L ⁻¹ of N ₂ O and CO of 0.45 vol.%, 0.1 g synthetic coal char M6	More than 80% N ₂ O conversion at 600 °C	C.A. Wang, Y. Du, and D. Che, <i>P. Combust. Inst.</i> 2015 , <i>35</i> , 2323-2330.
CO-SCR	Pt-Co ₃ O ₄ /CeO ₂ (10:10%)	cm ³ min ⁻¹ of flow velocity, about 150 mg of catalyst	T ₉₀ = 210 °C	2. Z. Khan, T. A. Khan, T. Khan, M. H. Sarwar Wattoo and A. Badshah, <i>Solid</i> <i>State Sci.</i> , 2019, 98 , 106035.
CO-SCR	Fe-Z-pH2 (Fe-ZSM-5 ion- exchanged under pH of 2)	1000 ppm N_2O , 1000 ppm CO, the total gas flow of 100 ml/min, 0.3 g catalysts	T ₉₀ = 300 °C	Y. You, S. Chen, J. Li, J. Zeng, H. Chang, L. Ma and J. Li, <i>J. Hazard. Mater.</i> , 2020, 383 , 121117.
NH₃-SCR	RuO ₂	1.5 mbar N ₂ O, 1.5 mbar NH ₃ , 1.5 mbar H ₂ , balanced with He,	T ₁₀₀ ≈ 623 K	M. Santiago, V. A. Kondratenko, E. V. Kondratenko, N. López and J. Pérez-Ramírez, <i>Appl. Catal., B-Environ.</i> , 2011, 110 33 30
NH ₃ -SCR	Cu/SSM	0.5% N ₂ O, 5% NH ₃ in Ar, total flow rate of 50 mL min ⁻¹	T ₁₀₀ = 400 °C	T. Umegaki, D. Noguchi and T. Fukumoto, <i>ChemistrySelect</i> , 2022, 7 , 1-6.
NH ₃ -SCR	Rh–FAU	0.2 vol% N ₂ O, 0.2% NH ₃ , balance with He; total flow rate = 90 cm ³ min ⁻¹ (space velocity: $30,000 h^{-1}$)	100% N ₂ O conversion at 300 $^\circ\!\mathrm{C}$	M. Mauvezin, G. Delahay, B. Coq, and S. Kieger, <i>Appl. Catal., B-Environ.</i> 1999 , <i>23</i> , L79-L82.
NH₃-SCR	Fe(49)-BEA	$\begin{array}{llllllllllllllllllllllllllllllllllll$	T ₅₀ = 392 °C	M. Mauvezin, G. Delahay, F. Kisslich, B. Coq, and S. Kieger, <i>Catal. Lett.</i> 1999 , <i>62</i> , 41-44.
NH₃-SCR	Fe-MOR	5000 ppm N ₂ O, 4000 ppm NH ₃ , 5% O ₂ , balanced with He. GHSV = 30 000 h^{-1} .	T ₁₀₀ = 700 K	X. Zhang, Q. Shen, C. He, C. Ma, J. Cheng, L. Li and Z. Hao, <i>ACS Catal.</i> , 2012. 2 . 512-520.
NH ₃ -SCR	Fe-MOR	5000 ppm N ₂ O, 4000 ppm NH ₃ , 5% O ₂ , balanced with He. GHSV = 30000 h ⁻¹ .	T ₉₀ = 685 K	X. Zhang, Q. Shen, C. He, C. Ma, J. Cheng and Z. Hao, <i>Catal. Commun.</i> ,

				2012. 18 . 151-155.
NH ₃ -SCR	Fe-BEA	$N_2O/NH_3/O_2/He = 0.2/0.2/3/99.6$, space velocity = 35000 h ⁻¹	More than 80% N₂O conversion at 427 °C	B. Coq, M. Mauvezin, G. Delahay and S. Kieger, <i>J. Catal.</i> , 2000, 195 , 298-303.
NH ₃ -SCR	Fe(97)BEAe	$\begin{array}{ll} N_2O/O_2/NH_3/He & (0.2/3.0/0.2/96.6), \\ VVH=35,000 \ h^{-1} \end{array}$	T ₅₀ = 380 °C	G. Delahay, M. Mauvezin, B. Coq and S. J. J. o. C. Kieger, <i>J. Catal.</i> , 2001, 202 , 156-162.
NH3-SCR	Fe(100)-FER	$\begin{array}{llllllllllllllllllllllllllllllllllll$	More than 90% №O conversion at 457 °C	A. Guzmanvargas, <i>Appl. Catal., B-</i> <i>Environ.</i> , 2003, 42 , 369-379.
NH₃-SCR	Fe(0.24)-MFI	N_2O (1000 ppm), NH_3 (670 ppm), balanced with He, 100 mg catalyst, total flow rate: 0.41 g h/mol	T ₁₀₀ = 400 °C	K. Sugawara, T. Nobukawa, M. Yoshida, Y. Sato, K. Okumura, K. Tomishige, and K. Kunimori, <i>Appl. Catal., B-Environ.</i> 2007 , <i>6</i> 9, 154-163.
NH₃-SCR	Fe/Beta (0.63 wt%)	540 ppm of N ₂ O, 360 ppm NH ₃ and 2.5% H ₂ O balanced with N ₂ , GHSV = 200,000 h ⁻¹	More than 70% N ₂ O conversion at 400 °C	A. Wang, Y. Wang, E. D. Walter, R. K. Kukkadapu, Y. Guo, G. Lu, R. S. Weber, Y. Wang, C. H. F. Peden and F. Gao, <i>J. Catal.</i> , 2018, 358 , 199-210.
NH ₃ -SCR	Fe-beta catalyst	1670 ppm of NH ₃ , 1000 ppm of N ₂ O, 3% O ₂ , balanced with N ₂ , 0.15 g of catalysts, and a total flow rate of 100 mL min ⁻¹	T ₉₀ = 400 °C	J. Zeng, S. Chen, Z. Fan, C. Wang, H. Chang and J. Li, <i>Ind. Eng. Chem. Res.</i> , 2020, 59 , 19500-19509.
NH ₃ -SCR	1% Fe-SSZ-13	500 ppm NH ₃ , 1000 ppm N ₂ O, 5% H ₂ O, balanced with N ₂ at a GHSV of 20,000 h^{-1}	T ₉₀ = 400 °C	J. Cheng, D. Zheng, G. Yu, R. Xu, C. Dai, N. Liu, N. Wang and B. Chen, <i>ACS Catal.</i> , 2022, 13 , 934-947.
HCs-SCR	(10 wt.%) Fe/Al ₂ O ₃	1000 ppm N ₂ O, 1000 ppm CH ₄ in He, total flow rate of 60 cm ⁻³ min ⁻¹	T ₁₀₀ ≈ 500 °C	M. Haneda, M. Shinriki, Y. Nagao, Y. Kintaichi and H. Hamada, <i>Bull. Chem.</i> Soc. Jpn., 2003. 76 , 2329-2333.
HCs-SCR	Fe-ZSM-5 supported on ceramic monoliths	500 ppmv N ₂ O, 500 ppmv hydrocarbon, N ₂ balance, GHSV = 12000 h ⁻¹	T ₉₀ = 382 °C (methane), T ₉₀ = 400 °C (propane), T ₉₀ = 478 °C (propene)	E. Ruiz-Martínez, J. M. Sánchez-Hervás and J. Otero-Ruiz, <i>Appl. Catal., B-</i> <i>Environ.</i> , 2004, 50 , 195-206. P. Kuśtrowski I. Chmielarz A. Bafalska
HCs-SCR	The hydrotalcite-derived Mg–Cr–Fe–O catalysts	0.8 vol% N ₂ O and the N ₂ O/EB molar ratio of 1:1), GHSV = 22000 h^{-1}	T ₅₀ = 450 °C, T ₉₀ = 500 °C	Lasocha, B. Dudek, A. Pattek-Janczyk and R. Dziembaj, <i>Catal. Commun.</i> , 2006, 7 1047 1052
HCs-SCR	Fe-silicalite	Mixtures of N ₂ O: Xe = 1:1 (pump) and CH ₄ :Ne = 1:1 (probe)	More than 60% N ₂ O conversion at 450 °C	E. V. Kondratenko and J. Pérez-Ramírez, <i>Catal. Today</i> , 2007, 119 , 243-246.
HCs-SCR	FeZSM-5 (Si/Al = 31.3 and 0.67 wt% Fe)	mbar of N ₂ O, 0.93 mbar of CH ₄ , or 0.44 - 0.57 mbar of one of the other hydrocarbons, and 20 mbar of O ₂ , the balance is He, P = 1 bar and GHSV = $60\ 000\ h^{-1}$	$\begin{array}{l} T_{50} = 340 \ ^{\mathrm{o}}C \ (CH_4), \ T_{50} = 332 \\ ^{\mathrm{o}}C \ (C_2H_6), \ T_{50} = 337 \ ^{\mathrm{o}}C \ (C_3H_8), \\ T_{50} = 342 \ ^{\mathrm{o}}C \ (C_2H_4), \ T_{50} = 352 \\ ^{\mathrm{o}}C \ (C_2H_2), \ T_{50} = 362 \ ^{\mathrm{o}}C \ (C_3H_4) \end{array}$	M. A. Hevia, and J. Perez-Ramirez, <i>Environ. Sci. Technol.</i> 2008 , <i>42</i> , 8896-8900.
HCs-SCR	Co-MOR-104	$N_2O:CH_4:O_2$ (4000:4000:20000 ppm), GHSV = 15000 h ⁻¹ , He as balance	More than 80% №O conversion at 500 °C	M. C. Campa, D. Pietrogiacomi and M. Occhiuzzi, <i>Appl. Catal., B-Environ.</i> , 2015,

				168-169 , 293-302.
HCs-SCR	CoO_x supported on ZrO_2	N ₂ O:C ₃ H ₆ :O ₂ = 4000:2000:20000 ppm (v/v), GHSV = 24000, He as balance	More than 80% N₂O conversion at 500 °C	M. C. Campa, D. Pietrogiacomi, C. Scarfiello, L. R. Carbone and M. Occhiuzzi, <i>Appl. Catal., B-Environ.</i> , 2019, 240 , 367-372.
HCs-SCR	CoO _x /ZrO ₂	4000 ppm N ₂ O, 2000 ppm C ₃ H ₆ , 2000 ppm O ₂ , total flow rate of 50 cm ³ _{STP} /min ⁻¹ , GHSV = 24000 h ⁻¹	About 80% N₂O conversion at 750 K	C. Campa, D. Pietrogiacomi, C. Scarfiello, L. R. Garbone and M. Occhiuzzi, <i>Appl. Catal., B-Environ.</i> , 2019, 240 , 367-372.
HCs-SCR	Fe-MOR-64	4000 ppm for N ₂ O and CH ₄ and 20000 ppm for O ₂ , GHSV = 15000 h^{-1} , He as balance	More than 95% N ₂ O conversion at 377 °C	D. Pietrogiacomi, M. C. Campa, L. Ardemani, and M. Occhiuzzi, <i>Catal. Today</i> 2019 , 336, 131-138.
HCs-SCR	Pt,Pd,Rh/Al ₂ O ₃ -ZrO ₂	[N ₂ O] = [CH ₄] = 4000 ppm, [O ₂] = 20000 ppm, GHSV = 12000 NL kg h ⁻¹ , He as balance	More than 90% N₂O conversion at 500 °C	M. C. Campa, A. M. Doyle, G. Fierro and D. Pietrogiacomi, <i>Catal. Today</i> , 2022, 384-386 , 76-87.
HCs-SCR	CuFeOx thin-film catalysts	1% N ₂ O, 1% CH ₄ in Ar as the balanced gas, GHSV = 185000 mL/(g h)	80% N ₂ O conversion at 490 °C	W. Muhammad, L. Wu, A. El Kasmi, A. Muhammad, and Z. Tian, <i>J. Therm. Sci.</i> 2023 , <i>32</i> , 531-541.
Photocatalytic decomposition	g-C ₃ N ₄	Reactor filled with the N ₂ O/He mixture (1020 ppm) and illuminated by an 8 W Hg lamp with a maximum light intensity at 254 nm	About 43 % N ₂ O conversion after 14 h	P. Praus, L. Svoboda, M. Ritz, I. Troppová, M. Šihor and K. Kočí, <i>Mater.</i> <i>Chem. Phys.</i> , 2017, 193 , 438-446.
Photocatalytic decomposition	BiVO4	3 vol.% O ₂ , 0.68 vol.% N ₂ O and balance Ar, and the catalyst used is 0.20 g; under UVA (λ = 365 nm) irradiation with Xenon lamp at ambient temperature	26.7% N ₂ O conversion after 12 h	L. Wang, J. Liu, W. Song, H. Wang, Y. Li, J. Liu, Z. Zhao, J. Tan, Z. Duan and J. Deng, <i>Chem. Eng. J.</i> , 2019, 366 , 504- 513.
Photocatalytic decomposition	BiVO4	680 ppm of N ₂ O, 3 vol % O ₂ , and balance Ar, under the visible light irradiation (λ > 420 nm)	27.1% N ₂ O conversion after 12 h	J. Liu, L. Wang, W. Song, M. Zhao, J. Liu, H. Wang, Z. Zhao, C. Xu and Z. Duan, ACS Sustainable Chem. Eng., 2018, 7 , 2811-2820.
Photocatalytic decomposition	Bi ₂ WO ₆	680 ppm of N ₂ O, 3 vol % O ₂ , and balance Ar, under the visible light irradiation (λ > 420 nm)	12.8% N_2O conversion after 12 h	J. Liu, L. Wang, W. Song, M. Zhao, J. Liu, H. Wang, Z. Zhao, C. Xu and Z. Duan, <i>ACS Sustainable Chem. Eng.</i> , 2018, 7 , 2811-2820.
Photocatalytic decomposition	g-C ₃ N ₄ /BiVO ₄	Reactor filled with the N ₂ O/He mixture (1050 ppm) and P = 1.5 bar, 8 W Hg lamp under UVA irradiation (λ = 365 nm)	About 15 % N₂O conversion after 22 h	M. Reli, I. Troppová, M. Šihor, J. Pavlovský, P. Praus and K. Kočí, <i>Appl.</i> <i>Surf. Sci.</i> , 2019, 469 , 181-191.
Photocatalytic decomposition	TiO ₂ /C ₃ N ₄	The reactor was filled with a N ₂ O/He mixture (968 ppm) and irradiated by an 8 W Hg lamp (λ = 254 nm; intensity =	57% N_2O conversion after 16 h	M. Reli, P. Huo, M. Šihor, N. Ambrožová, I. Troppová, L. Matějová, J. Lang, L. Svoboda, P. Kuśtrowski, M. Ritz, P. Praus

		0.5 mW/cm ²)		and K. Kočí, <i>J. Phys. Chem. A</i> , 2016, 120 , 8564-8573.
Photocatalytic decomposition	Nanobelt-like Bi ₂ MoO ₆	N_2O = 0.68 vol. %, O_2 = 3 vol. %, Ar balance, under UVA irradiation ($\lambda\text{=}365$ nm)	21.7% N ₂ O conversion after 12 h More than 60% N ₂ O	J. Tan, H. Cheng, J. Liu, J. Sun, Y. Li, H. Wang, J. Liu and Z. Zhao, <i>ChemistrySelect</i> , 2019, 4 , 5338-5344.
Photocatalytic decomposition	TiO ₂ /g-C ₃ N ₄	N_2O/He mixture (1020 ppm), under UVC (λ = 254 nm) and UVA (λ = 365 nm) irradiation	conversion after 14 h (λ = 254 nm); more than 60% N ₂ O conversion after 18 h (λ = 365 nm);	K. Kočí, M. Reli, I. Troppová, M. Šihor, J. Kupková, P. Kustrowski and P. Praus, <i>Appl. Surf. Sci.</i> , 2017, 396 , 1685-1695.
Photocatalytic decomposition	g-C ₃ N ₄ /BiOIO ₃	N ₂ O/He mixture (1050 ppm) and P = 1.5 bar, under UVA irradiation (λ = 365 nm)	About 14 % N_2O conversion after 22 h	V. Matějka, M. Šihor, M. Reli, A. Martaus, K. Kočí, M. Kormunda and P. Praus, <i>Mater. Sci. Semicond. Process.</i> , 2019, 100 , 113-122.
Photocatalytic decomposition	g-C ₃ N ₄ /WO ₃	998 ppm N ₂ O in He and P = 1.6 bar, under UVA irradiation at λ = 365 nm	About 15 % N_2O conversion after 20 h	M. Reli, L. Svoboda, M. Sihor, I. Troppová, J. Pavlovský, P. Praus and K. Kočí, <i>Environ. Sci. Pollut. Res.</i> , 2017, 25 , 34839-34850
Photocatalytic decomposition	Ag-TiO ₂	990 ppm N ₂ O/He mixture (volume 756 cm^3 , pressure 110 kPa), 8 W Hg lamp with a peak light intensity at 254 nm	77% N_2O conversion after 24 h	K. Kočí, S. Krejčíková, O. Šolcová and L. Obalová, <i>Catal. Today</i> , 2012, 191 , 134- 137.
Photocatalytic decomposition	Ce/TiO ₂	968 ppm N ₂ O/He mixture (volume 182 mL, pressure 110 kPa), 8 W Hg lamp with a peak light intensity at 254 nm	About 85 % N ₂ O conversion after 18 h	L. Matějová, M. Šihor, J. Lang, I. Troppová, N. Ambrožová, M. Reli, T. Brunátová, L. Čapek, A. Kotarba and K. Kočí, <i>J. Sol-Gel Sci. Technol.</i> , 2017, 84 , 158-168.
Combined plasma catalysis	γ-Al ₂ O ₃	300 ppm N₂O in N₂ at a rate of 100 mL min⁻¹, plasma voltage (12 – 22 kV)	T ₁₀₀ = 600 °C in deN ₂ O; above 90%	L. S. Ko, Y. S. Chen, K. L. Pan and M. B. Chang, <i>Catal. Commun.</i> , 2023, 177 , 106666.
Combined plasma catalysis	RhFe/HAP-11	10 vol.% N ₂ O-He at a rate of 30 mL min ⁻¹ , plasma current (0.2 mA) and plasma voltage (20 kV)	95.9% N ₂ O conversion at 350 °C in deN ₂ O; 90% N ₂ O conversion at 200 °C	X. Tan, H. Chen, L. Shi, Q. Lu, S. Qi, C. Yi and B. Yang, <i>Catal. Lett.</i> , 2023, 153 , 3724–3733.
Combined plasma catalysis	Ru/γ-Al ₂ O ₃	450 ppm N ₂ O, 10% O ₂ at a rate of 1 L min ⁻¹ , plasma voltage 25.6 kV	Above 70% N ₂ O conversion at 300 °C	JO. Jo, Q. H. Trinh, S. H. Kim and Y. S. Mok, <i>Catal. Today</i> , 2018, 310 , 42-48.
Microwave-assisted experimental	NiCoAl/SiC	20 vol.% N ₂ O in Ar, WHSV = 5 h^{-1} or 20 h^{-1} , microwave heating	T ₁₀₀ = 420 °C (20 h ⁻¹); T ₁₀₀ = 340 °C (5 h ⁻¹)	O. Muccioli, E. Meloni, S. Renda, M. Martino, F. Brandani, P. Pullumbi and V. Palma. <i>Processes</i> . 2023. 11 . 1511.
Electrochemical reduction	Working electrode: Ir (100) (110) (111)	1) Electrolyte: 0.1 M HClO ₄ ; 2) N ₂ O saturated solution	1) Ir (110): ~0.75 mA cm ⁻² (0.1 V _{RHE}); 2) Ir (111): ~0.85 mA cm ⁻² (0.1	R. Gomez and M. J. Weaver, <i>Langmuir,</i> 2002, 18 , 4426-4432.

Electrochemical reduction	Cathode: Metal wire (Zn, Pb, Fe, Cu) wound around a polyelectrolyte-coated porous glass tube	1) Electrolyte: 5% Nafion® 117 solution; 2) 17.7 mmol N ₂ O, 3-13 mL min ⁻¹ ; Electrolysis time=6-8 h; Applied current density=1.4-12.8 mA cm ⁻²	V _{RHE}) Max N ₂ O reduction efficiency (6 h, 6 mL min ⁻¹): Zn: 99.3% (12.8 mA cm ⁻²); Pb: 98.8% (12.8 mA cm ⁻²); Fe: 95.7% (12.8 mA cm ⁻²); Cu: 93.0% (7.1 mA cm ⁻²)	K. Kanazawa, H. Yamamura, M. Nakayama and K. Ogura, <i>J. Electroanal.</i> <i>Chem.</i> , 2002, 521 , 127-131.
Electrochemical reduction	Working electrode: OsPtCl ₆ film deposited on glassy carbon electrode	 Electrolyte: 0.1 M KCl and 0.01 M H₂PO₄; N₂O mixed with N₂, the percentage of N₂O=0, 30, 70, 100 	Onset potential=0.67 V _{RHE}	S.M. Chen, S.H. Li and R. Thangamuthu, <i>Electroanalysis</i> , 2009, 21 , 1505-1513.
Electrochemical reduction	Cathode: Cone-shaped electrodes of La _{1-x} Sr _x FeO ₃ perovskites	1) Electrolyte: Yttria Stabilized Zirconia; 2) 1% N ₂ O in Ar (20 mL min ⁻¹); Temperature: 350, 400 and 450°C 1) Electrolyte: 80 mL of 50 mM	0.023 mA cm ⁻² (0.4 V _{RHE} , 400 °C)	K. K. Hansen, Mater. <i>Res. Bull.</i> , 2010, 45 , 1334-1337.
Electrochemical reduction	Homogeneous catalyst: 15 µM CoMb; Working electrode: Carbon cloth electrode	phosphate buffer with CoMb (15 μ M) and methyl viologen (2 mM); 2) 9 mL ¹⁴ N–N ₂ O (100%) and 6 mL ¹⁵ N– N ₂ O (100%) added into the headspace of the electrochemical cell; Electrolysis time=20 min	 1) Total N₂: 11.3 to 19.6 μmol; 2) ¹⁵N-N₂: 41 to 72 nmol; 3) The ratio of ¹⁵N-N₂ to ¹⁴N-N₂: 1.57 × 10⁻⁵ to 3.42 × 10⁻⁵ 	T. D. Rapson, S. Warneke, M. M. Musameh, H. Dacres, B. C. T. Macdonald and S. C. Trowell, <i>RCS Adv.</i> , 2015, 5 , 89003-89008.
Electrochemical reduction	Working electrode: Porous In/Cu foam electrode	1) Electrolyte: 0.5 M NaOH; 2) N ₂ O saturated electrolyte solution and continued purging; Electrolysis time=5 h	1) 25 mA cm ⁻² (-0.75 V _{RHE}); 2) ~100% N ₂ Faradaic efficiency	K. H. Kim, T. Lim, M. J. Kim, S. Choe, S. Baek and J. J. Kim, <i>Electrochem. Commun.</i> , 2016, 62 , 13-16.
Electrochemical reduction	Working electrode: Pd ₆₀ Cu ₄₀ Catalyst coated on glassy carbon electrode	 Electrolyte: 0.2 M KOH and 0.3 M K₂SO₄; N₂O saturated electrolyte solution and continued purging 	1) 6.0 mA cm ⁻² (0.04 V _{RHE}); 2) Tafel slope=0.096 V dec ⁻¹	S. Baek, K. Kim, O. S. Kwon, H. Kim, J. W. Han, O. J. Kwon and J. J. Kim, J. <i>Appl.</i> <i>Electrochem.</i> , 2020, 50 , 395-405.
Electrochemical reduction	Working electeode: Au@Pd Core shell structure catalyst coated on RED	 Electrolyte: 0.3 M KOH and 0.2 M K₂SO₄; N₂O saturated electrolyte solution and continued purging 	 0.472 mA cm⁻² (-0.3 V_{SCE}); Tafel slope=0.105 V dec⁻¹; Current density decreased after 1000 cycles 	K. Kim, J. Byun, H. Kim, KS. Lee, H. S. Lee, J. Kim, T. Hyeon, J. J. Kim and J. W. Han, <i>ACS Catal.</i> , 2021, 11 , 15089-15097.
Electrochemical reduction	Homogeneous catalyst: 0.5 mM Re(bpy)(CO)₃Cl; Working electrode: RED	 Electrolyte: CH₃CN/H₂O=90/10; N₂O saturated electrolyte solution and continued purging; Electrolysis time=90 min 	1) 7.5 mA cm ⁻² (-1.72 V _{SCE}); 2) Max N ₂ percentage obtained=29.5%	R. Deeba, F. Molton, S. Chardon-Noblat and C. Costentin, <i>ACS Catal.</i> , 2021, 11 , 6099-6103.
Electrochemical reduction	Cathode: High surface area metallic Cu electrode	 Electrolyte: 0.1 M KOH; Cathode gas=N₂O or Ar; Anode gas=Ar (20 mL min⁻¹) 	1) 10.0 mA cm ⁻² (-0.2 V_{RHE}); 2) N ₂ Faradaic efficiency=83.3%; 3) Tafel slope=0 124 V dec ⁻¹	S. Nilvichean, K. Meesombad, T. Butburee, P. Chakthranont and R. Methaapanon, <i>React. Chem. Eng.</i> , 2022, 8 84-95
Electrochemical reduction	Working electrode: Pt/Pd deposited on fluorine-doped	1) Electrolyte: 0.1 M HClO ₃ ; 2) N ₂ O saturated solution	-0.25 ± 0.04 mA cm ⁻² (0.16 V _{RHE})	A. C. Sarker, M. Kato and I. Yagi, <i>Electrochim. Acta</i> , 2022, 425 , 140628.

tin oxide (FTO) electrode

Electrochemical reduction	Working electrode: La _{0.6} Sr _{0.4} Co _{0.2} Fe _{0.8} O _{3-δ} (LSCF)	1) Electrolyte: 8YSZ ($(ZrO_2)_{0.92}(Y_2O_3)_{0.08}$) substrate; 2) >99.5% purity of N ₂ O with N ₂ <0.4% (50 mL min ⁻¹); Temperature: 600, 700 and 800°C; current: -0.10 A and -0.25 A	1) Faradaic Efficiency=8.95; 2) Conversion increment=13.15 (-0.25 A, 600°C)	L. I. V. Holz, F. J. A. Loureiro, A. J. M. Araujo, V. C. D. Graca, D. Mendes, A. Mendes and D. P. Fagg, <i>Int. J. Energ.</i> <i>Res.</i> , 2022, 46 , 22038-22048.
Electrochemical reduction	Homogeneous catalyst: $[Re(bpy)(CO)_3X]^{n+}$ $(X=CH_3CN, Cl^{-}, n = 0 \text{ or } 1);$ Working electrode: RED	 1) Electrolyte: CH₃CN+0.1 M n- NBu₄PF₆; 2) CH₃CN solution of saturated N₂O, 1.5 mM N₂O; Constant potential=-1.22 V; Electrolysis time=4 h 	N ₂ Faradaic efficiency=90%	R. Deeba, S. Chardon-Noblat and C. Costentin, <i>ACS Catal.</i> , 2023, 13 , 8262-8272.
Electrochemical reduction	Cathode: Sr ₂ Fe _{1.5} Mo _{0.5} O _{6-δ} (SFMO)	1) Electrolyte: 8YSZ substrate; 2) >99.5% purity of N ₂ O with N ₂ <0.4% (50 mL min ⁻¹); Temperature: 600, 700 and 800°C; Current: -0.10 A and -0.25 A (50 mL min ⁻¹)	1) Faradaic Efficiency=3.94; 2) Conversion increment=5.01 (-0.25 A, 600°C)	L. I. V. Holz, F. J. A. Loureiro, V. C. D. Graça, S. M. Mikhalev, C. Fernandes, A. Mendes and D. P. Fagg, <i>Int. J. Hydrogen</i> <i>Energy</i> 2023 , <i>5</i> , 251.
Electrochemical reduction	Homogeneous catalyst: Iron tetraphenylporphyrin (FeTPP); Working electrode: Carbon fabric	 Electrolyte: 1 mM FeTPPCI and 0.1 M <i>n</i>-Bu₄NPF₄ in tetrahydrofuran (THF) solution with 20 equivalents of water; N₂O saturated solution; Applied potential=-2.3 V vs Fe(C₅H₅)^{2+/0}; Electrolysis time=2.2 h 	 Average Faradaic yield: 100.1% (Standard deviation of 4.7%); Reaction rate=12.6 s⁻¹ 	J. S. Stanley, X. S. Wang and J. Y. Yang, ACS Catal., 2023, 13 , 12617-12622.
Electrochemical reduction	Working electrode: Polycrystalline Cu	 Electrolyte: 0.3 M K₂SO₄ or Na₂SO₄; N₂O-saturated electrolyte solution and continued purging 	1) K ₂ SO ₄ : -43.75 mA cm ⁻² ; 2) Na ₂ SO ₄ : -33 mA cm ⁻² ; (-1.4	O. S. Kwon, S. Baek, H. Kim, I. Choi, O. J. Kwon and J. J. Kim, <i>Electroanalysis</i> , 2019 31 , 739-745
Electrochemical reduction	Working electrode: Cu foil	1) Electrolyte: 75 vol% 1-butyl-3- methylimidazolium tetrafluoroborate ([BMIM][BF4]) ionic liquid and propylene carbonate (PC) organic solvent or 0.3 M K ₂ SO ₄ ; 2) N ₂ O-saturated electrolyte solution and continued purging; -2.27 V (vs. Fc/Fc ⁺) in [BMIM][BF4]/PC and -1.3 V _{SCE}	1) N ₂ Faradaic efficiency: 90.9% in [BMIM][BF4]/PC, 41.0% in K ₂ SO ₄ ; 2) Current efficiency variation within 1800 s: remain over 95% in [BMIM][BF4]/PC and decreased from 83.9% to 49.6% in K ₂ SO ₄	H. Kim, S. Baek, T. Lim and J. J. Kim, <i>Electrochem. Commun.</i> , 2020, 113 , 106688.
Electrochemical reduction	Cathode: silver solid amalgam electrode (AgSAE)	Catholyte: 0.05 M Ni(II)CN ₄ ²⁻ and 9 M KOH; 2) 20 ppm N ₂ O by Ar diluted gas (1 L min ⁻¹); Current density=25 mA cm ⁻² ; Constant electrolysis time≥6 h	N ₂ O removal efficiency=99.8%	P. Silambarasan, A. G. Ramu, M. Govarthanan, K. D. Jung and I. S. Moon, <i>J. Hazard. Mater.</i> , 2021, 420 , 126564.
Electrochemical reduction	Working electrode: polycrystalline Pt and Pd	1) Electrolyte: 0.1 M NaOH or 0.1 M NaOH and 0.5 M or 1 M CH₃OH;	Tafel slope: Pt=0.111 ± 0.019 V dec ⁻¹ , Pd=0.084 ± 0.007 V	A. Aziznia, A. Bonakdarpour, E. L. Gyenge and C. W. Oloman, <i>Electrochim.</i>

	electrodes	2) N ₂ O saturated electrolyte solution and continued purging; Temperature: 295 K and 333 K; Electrode rotation speed 0.3600 rpm	dec ⁻¹ (0.1 M NaOH, 295 K; 1600 rpm, 0.01 V s ⁻¹)	<i>Acta</i> , 2011, 56 , 5238-5244.
Electrochemical reduction	Cathode: Cu; Scrubbing electrocatalyst: Ni(I)TSPc	 Electrolyte: Anolyte: 1 M H₂SO₄, Catholyte: 1 M KOH with 1 mM Ni(Π)TSPc; 5-30 ppm N₂O by Ar diluted gas; 30 mA cm⁻²; Reaction period: 5-20 min 	N ₂ O removal efficiency: 100% (5 ppm N ₂ O), 90% (10 ppm), 65% (20 ppm), 45% (30 ppm)	P. Silambarasan and I. S. Moon, <i>Environ.</i> <i>Res</i> ., 2022, 204 , 111912.
Electrochemical reduction	Cathode: Metal catalysts (Depositing Fe, Co, Ni, Cu, Pd, Ag, Pt particles onto gas diffusion layer)	 Electrolyte: 0.1 M NaOH and 0.9 M NaClO₄; Gas-fed three-compartment flow cell; N₂O flow (10 mL min⁻¹) 	N ₂ Faradaic efficiency: Co: 91.4% (-0.19 V _{RHE}); Cu: 91.7% (-0.31 V _{RHE}); Ag: 94.3% (-0.37 V _{RHE})	B. H. Ko, B. Hasa, H. Shin, Y. Zhao and F. Jiao, <i>J. Am. Chem. Soc.</i> , 2022, 144 , 1258-1266.
Electrochemical reduction	Anode: Pr _{0.6} Sr _{0.4} Fe _{0.8} Nb _{0.1} Cu _{0.1} O _{3-δ} Cathode: La _{0.6} Sr _{0.4} Co _{0.2} Fe _{0.8} O _{3-δ}	N ₂ O flow (80 mL min ⁻¹)	 N₂O conversion efficiency=19.0%; Ethane conversion efficiency=45.2%; Ethylene selectivity=92.5% 	S. Lei, A. Wang, G. Weng, Y. Wu, J. Xue and H. Wang, <i>J. Energy. Chem.</i> , 2023, 77 , 359-368.

** T₅₀ is temperature at which N₂O conversion reached 50%; T₉₀ is temperature at which N₂O conversion reached 90%; T₁₀₀ is temperature at which

 N_2O conversion reached 100%; r_{N2O} is N_2O reaction rate

** "NA" represents no specific indication or not involved in the research.

*** Except exceptionally indicated, the reaction conditions are ambient temperature and pressure, i.e., 25 °C and 101 KPa.

Reaction The role of N₂O Final products Reaction conduction Efficiencv Ref. Catalyst substrate Fe-MFI zeolites of V. S. Chernyavsky, L. V. Pirutko, A. alumosilicate 1) Conversion: 0.9%-1.5% O-atom donor: 375 °C; 5.5 mol% N₂O, (AS), borosilicate for C₆H₆, 11-16% for N₂O; K. Uriarte, A. S. Kharitonov and G. Benzene oxidation CeHe C₆H₅OH 50 mol% C₆H₆, 2 mL s⁻ 2) Selectivity: $C_6H_6>99\%$, (BS) and I. Panov, J. Catal., 2007, 245, 466to phenol ¹; Time=15 min titanosilicate (TS) N₂O >70% 469. composition 1) Conversion: 100% for N₂O; 2) Selectivity of C₆H₆=93.3%; J. Chen, R. Yin, G. Chen, J. Lang, O-atom donor: 425 °C: 5 mol% N2O 3) C₆H₅OH formation C₆H₅OH Benzene oxidation C₆H₆ Fe/ZSM-5-Hix-F and 50 mol% C₆H₆ in X. Chen. X. Chu and J. Li. Green. rate=16.49 ± 0.06 mmolphenol He: Time=3-30 h to phenol Energy. Environ., 2023, 8, 4-9. q_{catalvst}⁻¹ h⁻¹; 4) C₆H₅OH productivity=0.44 tonphenol kgcatalyst⁻¹ F. Le Vaillant, A. Mateos Calbet, S. O-atom donor: Bipyridine-González-Pelayo, E. J. Reijerse, S. Benzene oxidation supported Ni(II) 25 °C: 1.5–2 bar N₂O 73% vield of phenol Ni, J. Busch and J. Cornella, to phenol complex X = I, Br Nature, 2022, 604, 677-683. O-atom donor: H. Zhang, J. Rodrigalvarez and R. 60 °C: 2 atm N₂O: Benzene oxidation 1. 4-Ni shift Max yield=87% Martin. J. Am. Chem. Soc., 2023. Time=48 h to phenol 145. 17564-17569. sp² C–H sp² C-O CH₄/N₂O=0.5: O-atom donor: G. Zhao, A. Adesina, E. Kennedy Oxidation of CH₃OH. 1) Methane Fe-ferrierite (Fe-250-350 °C: CH₄ CH₃OCH₃, conversion=57%: alkanes to and M. Stockenhuber, ACS Catal., FER) CH₄/N₂O=0.5-6.0 oxvgenated CH₂O. C₂H₄ 2) Selectivity to valuable 2020, **10**, 1406-1416. organics products=24.4% O-atom donor: 400 °C and 430 °C; 1) C₃H₈ conversion=50% A. Held, J. Kowalska-Kuś and K. Oxidation of C₃H₈/N₂O/He=1/15/12/ (400 °C): alkanes to C₃H₈ Propene oxide V/SBA-3 5; Time=2 h, contact Nowińska, J. Catal., 2016, 336, 23-2) Propene oxide selectivity oxygenated time=2.1 s 32. from propene=~20% (400 °C) organics 1) Selectivity of cyclohexanol O-atom donor: J. She, Z. Fu, J. Li, B. Zeng, S. Oxidation of Cyclohexanol Visible light-triggered; 1 and cyclohexanone =90.2%; $PMo_{12-n} V n, n$ Tang, W. Wu, H. Zhao, D. Yin and atm N₂O: 1 mmol 2) Selectivity of alkanes to Cyclohexane and =1-3 S. R. Kirk, Appl. Catal. B Environ., cvclohexane. cyclohexanone=82.7%; oxygenated cyclohexanone 2016, 182, 392-404. 2) Cyclohexane conversion organics

Table S2. Summary of representative studies for N_2O valorization.

rate=26.2%

O-atom donor: Oxidation of olefins to ketones and aldehydes	Propane- propylene mixture	Acetone, propionaldehy de, and acetaldehyde	NA	450 °C and 0.7 MPa; 15 mol % propane and 85 mol % propylene	 N₂O conversion rate=74.5%; Propylene conversion rate=12.5%; Selectivity of acetone, propionaldehyde, and acetaldehyde=74.6%; Selectivity of methylcyclopropane=6%. 	K. A. Dubkov, M. V. Parfenov and A. S. Kharitonov, <i>Ind. Eng. Chem.</i> <i>Res.</i> , 2020, 59 , 14157-14162.
O-atom donor: Oxidation of olefins to ketones and aldehydes	Butene– butane mixture (BBM)	Methyl ethyl ketone (MEK)	NA	220–260 °C; 5-8 MPa; 0.093 mol BBM and 0.093 mol N ₂ O; Solvent: <i>n</i> -hexadecane; Time=6-12 h	1) MEK selectivity=45.9%- 47.2%; 2) Total selectivity to ketones/aldehydes=87%	S. V. Semikolenov and K. A. Dubkov, <i>Ind. Eng. Chem. Res.</i> , 2023, 62 , 9153-9158.
O-atom donor: Oxidation of olefins to ketones and aldehydes	R [×] R [×] R=R [×] =Alkyl, Aryl, H	R	$[Mn^{III}_2ZnW(ZnW_9 O_{34})_2]^{10-}$	150 °C;1 atm N₂O; 1 mmol of substrate; 0.01 mmol catalyst; 1 mL of fluorobenzene; Time=18 h	Selective epoxidation of alkenes >99.9%	R. Ben-Daniel, L. Weiner and R. Neumann, <i>J. Am. Chem. Soc.</i> , 2002, 124 , 8788-8789.
N-atom donor	Ar Ar=Dipp, Mes, Xyl	$\begin{bmatrix} Ar & Ar & Ar \\ N & N & Ar \\ N & Ar & Ar \end{bmatrix}$	NA	25 °C; №O (~50 mL, 1 bar) was added at 0°C; Tme=48 h	Yield: 43%-96%	Eymann, L. Y. M.; Varava, P.; Shved, L. Y. M. Eymann, P. Varava, A. M. Shved, B. F. E. Curchod, Y. Liu, O. M. Planes, A. Sienkiewicz, R. Scopelliti, F. Fadaei Tirani and K. Severin, <i>J. Am. Chem. Soc.</i> , 2019, 141 , 17112-17116.
N-atom donor	R LIN R	R'-N, R N-N, R	R'MgX	25 °C or 50 °C; N₂O dissolved in THF; Time=4 and 18 h	Yield =68%-100% (4 h, 50 ℃), 65%-100% (18 h, 50 ℃), 9%-98% (4 h, 50 ℃), 13%-95% (18 h, 50 ℃)	G. Kiefer, T. Riedel, P. J. Dyson, R. Scopelliti and K. Severin, <i>Angew. Chem. Int. Ed.</i> , 2015, 54 , 302-305.
N-atom donor	K N N R (R=Mes, <i>i</i> Pr, Me)	$ \begin{array}{c} \stackrel{R}{\underset{N}{\overset{N}{\underset{R}{}}}} \xrightarrow{N} \xrightarrow{R} \\ \stackrel{R}{\underset{R}{}{}} \xrightarrow{R} \\ X^{-}=BPh4^{-} \text{ or } \\ CIO4^{-} \end{array} $	Arenes and AICI₃	Aromatic coupling partners: C ₆ H ₅ F, heterocycles, and polymers; 2 equiv AICI ₃ and 1 equiv R-N ₂ O	Yield=52%-94%	A. G. Tskhovrebov, L. C. E. Naested, E. Solari, R. Scopelliti and K. Severin, <i>Angew. Chem. Int.</i> <i>Ed</i> ., 2015, 54 , 1289-1292.

N-atom donor	R^1 R^2	R^{1}	NA	50 °C; Under N ₂ O atmosphere (3x N ₂ O/ <i>vac</i> cycles); 1.1 equiv <i>n</i> -BuLi and 0.05 M THF; Time=2 h	Conversion efficiency of triazolopyridines >95%	I. R. Landman, F. Fadaei-Tirani and K. Severin, <i>Chem. Commun.</i> , 2021, 57 , 11537-11540.
Oxidant for oxidative dehydrogenation	C_6H_{12}	C_6H_{10} and C_6H_6	PCN-250 (Fe₂Mn, Fe₃, Fe₂Co and Fe₂Ni)	250 °C; №0 (5 mL min ⁻ ¹, 1%, Airgas); Time=8 h	Selective of C ₆ H ₁₀ : PCN-250 (Fe ₃) and PCN-250 (Fe ₂ Mn)=~100%; PCN-250 (Fe ₂ Co) and PCN-250 (Fe ₂ Ni)=93%-95%	M. Barona, S. Ahn, W. Morris, W. Hoover, J. M. Notestein, O. K. Farha and R. Q. Snurr, <i>ACS Catal.</i> , 2020, 10 , 1460-1469.
Oxidant for oxidative dehydrogenation	C_2H_6	C ₂ H ₄	Sulfate-Modified NiAl	480-600 °C; 2 vol % C ₂ H ₆ and 2 vol % N ₂ O in He (30 mL min ⁻¹)	1) C ₂ H ₆ conversion=52%; 2) C ₂ H ₄ Selectivity = \sim 100%;	Y. Zhou, F. Wei, J. Lin, L. Li, X. Li, H. Qi, X. Pan, X. Liu, C. Huang, S. Lin and X. Wang, <i>ACS Catal.</i> , 2020, 10 , 7619-7629.
Oxidant for oxidative dehydrogenation	Ethylbenzene	Styrene	K/Co2AIO4	500 °C; Molar ratio of N ₂ O/ Ethylbenzene=3 (150 mL min ⁻¹); Time=1-6 h	1) Ethylbenzene conversion=62.0%; 2) N ₂ O conversion=~100% 3) Styrene selectivity=85.1%;	Z. Liu, Y. Li, X. Sun, Z. Sui and X. Xu, <i>J. Ind. Eng. Chem.</i> , 2022, 112 , 67-75.
Oxidant for oxidative dehydrogenation	Cyclohexanol	Cyclohexanon e	1% Cu- decatungstate (DT) catalyst	25 °C; 1 atm; visible light illumination; substrate concentration=1 M; 0.012 mM catalyst.	1) Yield=46.3%; 2) Turnover frequency (TOF)=6.56 h ⁻¹	J. Zhu, B. Yang, Y. Deng, M. Chen, H. Wang, A. Wang, W. Gao, J. She, M. Luo, Y. Liu and Z. Fu, <i>Appl. Catal. B-Environ.</i> , 2022, 318 , 121861.
Oxidant for oxidative dehydrogenation	CH4	C ₂ hydrocarbons	Mn-Na₂WO₄/SiO₂	800 °C; 40 vol % CH ₄ and 10 vol % N ₂ O in a He/Ne = 9:1 mixture (30 mL min ⁻¹)	Methane conversion into C ₂ hydrocarbons >1	Z. Aydin, A. Zanina, V. A. Kondratenko, J. Rabeah, J. Li, J. Chen, Y. Li, G. Jiang, H. Lund, S. Bartling, D. Linke and E. V. Kondratenko, <i>ACS Catal.</i> , 2022, 12 , 1298-1309.
Oxidant for oxidative dehydrogenation	R-MgX (R=aryl, alkenyl, alkyl; X=Cl, Br)	R-R	Li ₂ CuCl ₄ , Li ₂ MnCl ₄ , CoCl ₂ ,FeCl ₃ ,Fe(ac ac) ₃	25 °C; 1 mol% catalyst; Time=1 h	Yield=30-95%, 95% (CoCl₂); 94% (FeCl₃, [Fe(acac)₃])	G. Kiefer, L. Jeanbourquin and K. Severin, <i>Angew. Chem. Int. Ed.</i> , 2013, 52 , 6302-6305.

* "NA" represents no specific indication or not involved in the research.