Supporting Information

Recent Advances in Rational Structure Design for Nonlinear Optical

Crystals: Leveraging Advantageous Templates

Ziting Yan,^{ab} Jinbin Fan,^{ab} Shilie Pan^{*ab} and Min Zhang^{*ab}

^a·Research Center for Crystal Materials; State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions; Xinjiang Key Laboratory of Functional Crystal Materials; Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Road, Urumqi 830011, China. E-mail: slpan@ms.xjb.ac.cn, zhangmin@ms.xjb.ac.cn.

^b.Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.

	Compounds	Space group	SHG	Δn	Absorption edge (nm)
KBBF	$KBe_2BO_3F_2$	R32	1.25KDP	0.088@400nm	147
	γ-KBe ₂ B ₃ O ₇	P2 ₁	0.68KDP	/	186ª
	в-КВе ₂ В ₃ О ₇	Pmn2 ₁	0.75KDP	/	187ª
	$RbBe_2B_3O_7$	Pmn2 ₁	0.79KDP	/	179 ^a
Beryllium	Na ₂ CsBe ₆ B ₅ O ₁₅	С2	1.17KDP	/	192ª
borates with	$Na_2Be_4B_4O_{11}$	P1	1.3KDP	0.047@400nm	171
KBBF-like	$LiNa_5Be_{12}B_{12}O_{33}$	Рс	1.4KDP	0.045@1064nm	169
structure	$BaBe_2BO_3F_3$	<i>P</i> 6 ₃	0.1KDP	0.081@200nm	<185
	$NH_4Be_2BO_3F_2$	R32	1.2KDP	0.057@400nm	153
	γ-Be ₂ BO ₃ F	R32	2.3KDP	0.0989@1064nm	144.8ª
	$Be_2BO_3F^*$	<i>р</i> б2с	1.5KDP	0.086@400nm	138
Al	BaAlBO ₃ F ₂	рб2с	2.0KDP	0.0522@266nm	165
borates with	$Rb_3Al_3B_3O_{10}F$	P31c	1.2KDP	/	<200
KBBF-like	CsAlB ₃ O ₆ F	Pna21	2.0KDP	0.091@1064nmª	166ª
structure	RbAlB ₃ O ₆ F	Pna21	0.2KDP	0.0946@1064nmª	<200
	$Cs_{0.5}Rb_{0.5}AlB_3O_6F$	<i>р</i> б2с	2.0KDP	/	<200
	BaZnBO₃F	рō	2.8KDP	/	223
Zinc borates	CsZn ₂ B ₃ O ₇	Cmc21	1.5KDP	0.056@1064 nm	218
with KBBF-	AZn ₂ BO ₃ X ₂ (A=NH ₄ ,	R32	~2.53-3.01KDP	/	190-209
like	Na, K, Rb, X=Cl, Br)				
structure	$CsZn_2BO_3F_2$	R32	3.2KDP	/	190
Structure	$CsZn_2BO_3Cl_2$	R32	2.8KDP	/	190
	CsZn ₂ BO ₃ FCl	R3	3.5KDP	/	190
Othor	$Li_4Sr(BO_3)_2$	Сс	2.0KDP	0.056@532nm	186
boratos with	Pb ₂ BO ₃ Cl	P321	9.0KDP	0.12@1064nm	<300
	Pb ₂ BO ₃ Br	<i>P</i> 321	9.5KDP	0.055@1064nmª	~372
	Pb ₂ BO ₃ I	<i>P</i> 321	10.0KDP	0.036@1064nm	<330
SUUCLUIE	$K_5Mg_2La_3(BO_3)_6$	P31m	3.1KDP	/	<200

TableS1. Structures and optical properties of KBBF-type compounds.

^a The data come from theoretical calculations. / = Not available. *Theoretically designed structure by using the first principles calculation method.

	Compounds	Space group	SHG	Δn	Absorption edge (nm)
SBBO	SrBeB ₂ O ₄	р ⁷ 62с	3.8KDP	0.062@589nm ^a	155
Beryllium borates	NaCaBe ₂ B ₂ O ₆ F	Сс	0.4KDP	0.057@800nm	190ª
	BaAl ₂ B ₂ O ₇	R32	1.7KDP	0.063@589.3nm	180
	$K_2AI_2B_2O_7$	P321	~0.9KDP	0.07@1064nm	180
Aluminum	$K_3Ba_3Li_2AI_4B_6O_{20}F$	р ⁷ 62с	1.5KDP	0.063@532nm	190
borates	$K_3Sr_3Li_2AI_4B_6O_{20}F$	R32	1.7KDP	0.062@532nm	190
	$Rb_3Ba_3Li_2Al_4B_6O_{20}F$	Р ⁷⁶ 2с	1.5KDP	0.061@532nm	~198
	$Cs_2Al_2(B_3O_6)_2O$	<i>P</i> 6 ₃	<1KDP	0.136@177.3	180
Othor	$Ba_3Mg_3(BO_3)_3F_3$	Pna2 ₁	1.8KDP	0.045@532nm	184
horates	$Ba_3Mg_3(BO_3)_3F_3$	<i>P</i> ⁶ 2m	2.0KDP	/	<190
	$CaZn_2(BO_3)_2$	Aba2	3.8KDP	0.081@546nm	<190

 TableS2. Structures and optical properties of SBBO-type compounds.

^a The data come from theoretical calculations. / = Not available.

TableS3. Structures and optication	al properties of	f ABF-type compounds.
------------------------------------	------------------	-----------------------

	Compounds	Space group	SHG	Δn	Absorption edge (nm)
ABF	$NH_4B_4O_6F$	Pna2 ₁	3.0KDP	0.117@1064nm	156
	CsB ₄ O ₆ F	Pna2 ₁	1.9KDP	0.114@1064nm	155
	NaB ₄ O ₆ F	С2	0.9KDP	0.120@1064nm	<180
Alkali metal	RbB ₄ O ₆ F	С2	0.8KDP	0.102@1064nm	<190
fluorooxoborate	$CsKB_8O_{12}F_2$	P321	1.9KDP	0.105@1064nm	<190
S	$CsRbB_8O_{12}F_2$	р ⁷⁶ 2с	1.1KDP	/	<190
	CsKB ₈ O ₁₂ F ₂ ·CsI	R32	0.6KDP	0.08@1064 nm	216
	$CsNH_4B_8O_{12}F_2 \cdot CsI$	R32	/	/	/
Alkaline earth	$MgB_5O_7F_3$	Cmc2 ₁	2.4KDP	0.07@1064nm	<200
metal	$CaB_5O_7F_3$	Cmc2 ₁	2.0KDP	0.07@1064nm	<180
fluorooxoborate	$SrB_5O_7F_3$	Cmc2 ₁	1.6KDP	0.072@589nm	<180
S	$BaB_2O_3F_2$	P2 ₁	/	/	<180
Other	PbB ₅ O ₇ F ₃	Cmc2 ₁	6KDP	0.12@1064nm	225
fluorooxoborate	$PbB_2O_3F_2$	P3 ₁ m	13KDP	/	220
S	$SnB_2O_3F_2$	P31m	4KDP	/	250

	Compounds	Space group	SHG	Δn	Absorption edge (nm)
	LiB ₃ O ₅	Pna2 ₁	<i>d</i> ₃₁ =-0.67	0.041@1064nm	155
LBO			<i>d</i> ₃₂ =0.85		
			<i>d</i> ₃₃ =0.04		
	$Li_2B_6O_9F_2$	Сс	0.9KDP	0.07@1064nm	< 190
	LiB ₆ O ₉ F	Pna2 ₁	<i>d</i> ₁₅ =0.055	0.06@1064nm	Bandgap=6.57ª
			d ₂₄ =0.161		
Fluorine-directed			<i>d</i> ₃₃ =-0.011		
modification	$Li_2B_3O_4F_3$	P2 ₁ 2 ₁ 2 ₁	<i>d</i> ₁₄ =0.088	0.05@1064nm	Bandgap=6.73ª
	$LiNaB_6O_9F_2$	Pnn2	1.1KDP	0.067@1064nm	<190
	$RbB_3O_4F_2$	<i>P</i> 2 ₁ / <i>c</i> (CS)	/	0.09@1064nm	<190
Combining anion	$Cs_3[(BOP)_2(B_3O_7)_3]$	R3	3.0KDP	0.075@532nm	165
groups based on [B ₃ O ₇]	$Rb_{3}B_{11}P_{2}O_{23}$	P1	2.5KDP	0.071@1064nm	168
"Structure apploand"	BC ₂ N ₅ H ₆ (OH) ₂ ·H ₂ O	P2 ₁ 2 ₁ 2 ₁	0.5KDP	0.181@546.1nm	240
Structure-analogue	$B(C_2N_5H_{6.5})_2(NO_3)_2$	C222	5.9KDP	0.148@546.1nm	243

TableS4. Structures and optical properties of LBO-type compounds.

	Compounds	Space group	SHG	Δn	Absorption edge (nm)
<i>6</i> -BBO	в -ВаВ ₂ О ₄	R3c	5.8KDP	0.114@1079nm	189
	Ca ₃ (C ₃ N ₃ O ₃) ₂	R3c	<i>d</i> ₂₂ =3.46	0.372@589.3nm	/
	$Ca_{3-x}Sr_x(C_3N_3O_3)_2$	R3c	>BBO	/	/
	α -Sr ₃ (C ₃ N ₃ O ₃) ₂	Сс	>BBO	/	/
	β -Sr ₃ (C ₃ N ₃ O ₃) ₂	R3c	d ₂₂ =3.93	0.374@589.3nm	420
	$K_6Cd_3(C_3N_3O_3)_4$	j43d	<i>d</i> ₁₄ =1.17	/	237
	$Eu_3(C_3N_3O_3)_2$	R3c	<bbo@80< td=""><td>/</td><td>/</td></bbo@80<>	/	/
			0nm		
	KLi(HC ₃ N ₃ O ₃)·2H ₂ O	Pna21	5.3KDP	0.186@514nm	237
Cyanurates	RbLi(HC ₃ N ₃ O ₃)·2H ₂ O	Pna2 ₁	2.1KDP	0.18@514.6nmª	239
	$RbNa(HC_3N_3O_3)\cdot 2H_2O$	Pna2 ₁	5.3KDP	0.194@532nm	247
	$Rb_{0.86}Cs_{0.14}Na(HC_3N_3O_3)$	Pna2 ₁	3KDP	0.238@532nm ^a	240
	·2H ₂ O				
	$Sr(HC_3N_3O_3)\cdot 2H_2O$	Ima2	/	/	/
	$Sr(HC_3N_3O_3)\cdot 2.5H_2O$	Pnc2	<i>d</i> ₁₅ =5.00	0.341@800nmª	/
	$Cs_3Na(H_2C_3N_3O_3)_4$ ·3H ₂ O	Pmn2 ₁	0.67KDP	0.29@514nmª	227
	$Rb_3Na(H_2C_3N_3O_3)_4 \cdot 3H_2O$	Pmn2 ₁	0.4KDP	0.389@532nm ^a	234
	$LiCl \cdot (H_3C_3N_3O_3)$	R3m	<i>d</i> ₂₂ =4.15	0.28@800nmª	215
Barbituratos	$Li_2(H_2C_4N_2O_3)\cdot 2H_2O_3$	Fdd2	10.8KDP	0.218@546nm	261
	$Ca(H_3C_4N_2O_3)_2 \cdot H_2O_3$	Aba2	1.15KDP	0.490@546.1nm	269
Melamine	$2(C_3H_7N_6)^+2CI^-\cdot H_2O$	<i>Cmc</i> 2 ₁	4.3KDP	0.277@546 nm ^a	245
[C₅H ₆ ON]⁺	$[C_5H_6ON]^+[H_2PO_4]^-$	P2 ₁ 2 ₁ 2 ₁	3.0KDP	0.25@1064nm ^a	264
cation					
$[C_4H_6N_3]^+$	$[C_4H_6N_3]^+[H_2PO_3]^-$	P2 ₁	2.0KDP	0.225@589.3nm	346
cation					
	[C(NH ₂) ₃] ₂ [B ₃ O ₃ F ₄ (OH)]	<i>P</i> 1	1.4KDP	0.161@1064nm	195
	C(NH ₂) ₃ SO ₃ F	R3m	5KDP	0.133@1064nm	200
Other organic	$C(NH_2)_3BF_4$	R3m	4.03KDP	0.120@546nm	193
planar π-	[C(NH ₂) ₃] ₆ (PO ₄) ₂ ·3H ₂ O	Сс	3.8KDP	0.078@1064nm	205
conjugated	[C(NH ₂) ₃] ₃ PO ₄ ·2H ₂ O	Pna2 ₁	1.5KDP	0.055@546.1nm	250
groups	$(NH_4)_2C_2O_4\cdot H_2O$	P2 ₁ 2 ₁ 2 ₁	0.9KDP	0.1587@546nm	/
	(NH ₄)Sb ₂ C ₂ O ₄ F ₅	P2 ₁ 2 ₁ 2 ₁	1.1KDP	0.111@546nm	285
	NaHC ₄ O ₄ ·H ₂ O	Рс	2.3KDP	0.52@1064nm	350

TableS5. Structures and optical properties of θ -BBO-type compounds.

	Compounds	Space group	SHG	Δn	Bandgap (eV)
КТР	KTiOPO ₄	Pna2 ₁	~8KDP	/	3.65
	NH ₄ TiOPO ₄	Pna2 ₁	quartz: 2400	/	/
	TITiOPO ₄	Pna21	quartz: 6000	/	/
	AgTiOPO ₄	Pna2 ₁	/	/	/
	KAIFPO ₄	Pna2 ₁	/	/	/
Phosphates	KGaFPO ₄	Pna2 ₁	/	/	/
	KGeOPO ₄	Pna2 ₁	quartz: 3.3	/	/
	KVOPO ₄	Pna2 ₁	/	/	/
	KSnOPO ₄	Pna21	quartz: 0.5	/	/
	KMg(H ₂ O)PO ₄	Pmn2 ₁	~1.14KDP	0.017@1064nm	>6.2
	NH ₄ SbSO ₄ Cl ₂	P2 ₁ 2 ₁ 2 ₁	~1.7KDP	/	4.54
	RbSbSO ₄ Cl ₂	P212121	2.7KDP	/	3.48
	$CsSbSO_4F_2$	Pna21	3.0KDP	0.112@1064nm	4.76
	$RbSbSO_4F_2$	Pna21	0.96KDP	/	4.75
	$NH_4SbSO_4F_2$	Pna2 ₁	0.7KDP	0.138@1064nm	4.67
Sulfator	$NH_4BiSO_4Cl_2$	P212121	4.8KDP	0.055@1064nm	<4.0
Sunates	RbBiSO ₄ Cl ₂	P2 ₁ 2 ₁ 2 ₁	5.5KDP	0.056@1064nm	<4.0
	KBiSO ₄ Cl ₂	P2 ₁ 2 ₁ 2 ₁	5.3KDP	0.047@1064nm	<4.0
	K ₂ Mn ₃ (SO ₄) ₃ F ₂ ·4H ₂ O	Cmc2 ₁	0.2KDP	/	5.54
	Rb ₂ Mn ₃ (SO ₄) ₃ F ₂ ·2H ₂ O	Cmc2 ₁	0.25KDP	/	5.55
	KMgSO₄F	Pna2 ₁	<1KDP	/	>6.52
	KZnSO ₄ F	Pna2 ₁	<1KDP	/	>6.52
Othor VTD	Pb ₂ GaF ₂ (SeO ₃) ₂ Cl	P2 ₁	4.5KDP	/	4.32
tupo crustolo	$ZrOF_4H_2$	j42d	2.2KDP	0.035@546nm	>6.52
type crystals	$HfOF_4H_2$	Į42d	1.8KDP	0.026@546nm	>6.52

TableS6. Structures and optical properties of KTP-type compounds.

/ = Not available.

	Compounds	Space group	SHG	Δn	Absorption edge (nm)
	$K_3B_6O_{10}Br$	R3m	3.0KDP	0.048@589.3 nm	182
	K ₃ B ₆ O ₁₀ Cl	R3m	4.0KDP	/	180
	$K_{3-x}Na_{x}B_{6}O_{10}Br$	R3m	~2.8KDP	/	<190
	(<i>x</i> = 0.13, 0.67)				
Dorovskito	$K_{3-x}Na_xB_6O_{10}Br$	Pnma(CS)	/	/	<190
framowork type	(<i>x</i> =1.30, 2.20)				
framework-type	$Na_3B_6O_{10}Br$	Pnma(CS)	/	/	290
	$Na_3B_6O_{10}Cl$	P2 ₁ 2 ₁ 2 ₁	<i>d</i> ₁₄ = -0.06 ^a	/	<190
	RbNa ₂ B ₆ O ₁₀ Cl	P2 ₁ 2 ₁ 2 ₁	<i>d</i> ₁₄ = 0.03 ^a	/	<190
	$RbNa_2B_6O_{10}Br$	Pnma(CS)	/	/	<190
	$Rb_3B_6O_{10}Cl^*$	P2 ₁ 2 ₁ 2 ₁	2.2KDP	0.047@532 nm	6.56
	BaClBF ₄	Pmn2 ₁	0.2KDP	/	180
	α -BaBOF ₃	P2 ₁	<i>d</i> ₁₆ = 0.21,	/	<200
			<i>d</i> ₁₄ = 0.05,		
			d ₂₂ =-0.33,		
			<i>d</i> ₂₃ = 0.24 ^a		
	BaBOF ₃ *	Сс	<i>d</i> ₁₁ = -0.19,	/	<200
Aurivillius_type			<i>d</i> ₁₂ = -0.10,		
Adminus-type			$d_{13} = 0.003,$		
			<i>d</i> ₁₅ = 0.03,		
			<i>d</i> ₂₄ = 0.07,		
			d ₂₂ = -0.18,		
			<i>d</i> ₂₄ = -0.04 ^a		
	<i>6</i> - ВаВОF ₃	<i>P</i> 2 ₁ / <i>c</i> (CS)	/	/	<200
	γ -BaBOF ₃	<i>P</i> 2 ₁ / <i>c</i> (CS)	/	/	<200

TableS7. Structures and optical properties of Perovskite framework-type and Aurivillius-typecompounds.

^a The data come from theoretical calculations. / = Not available. *Theoretically designed structure by using the first principles calculation method.

	Compounds	Space group	SHG	∆ <i>n</i> (1064nm)	Bandgap
	Compounds	Space group	300	Δ/(10041111)	(eV)
AGS	AgGaS ₂	I42d	<i>d</i> ₃₆ =13.40	0.039	2.73
	α-ZnS	F43m	<i>d</i> ₃₆ = 15.29	0	3.60
	β-ZnS	P6₃mc	<i>d</i> ₃₃ = -12.35	0.004	3.49
	GeS ₂	I42d	d ₃₆ = 12.52 ^a	0.050 ^a	3.85ª
	Ga_2S_3	Сс	d ₁₃ = 15.46 ^a	0.041ª	2.80
	AgAlS ₂	I 4 2d	$d_{36} = 4.88^{a}$	0.047ª	3.20
	AgGaS ₂	I42d	<i>d</i> ₃₆ = 13.40	0.053	2.73
Binary and	LiAIS ₂	Pna2 ₁	d ₃₃ = 13.37ª	0.014ª	4.68
	LiGaS₂	Pna2 ₁	<i>d</i> ₃₃ = 10.70	0.040	4.15ª
ternary	Cu_3SbS_4	I42d	<i>d</i> ₃₆ = -66.06 ^a	0.072 ^a	0.88
diamond like	Cu_3AsS_4	Pmn2 ₁	<i>d</i> ₃₃ = -80.01 ^a	0.230ª	1.34
structures	Li ₃ PS ₄	Pmn2 ₁	<i>d</i> ₃₃ = 4.32 ^a	0.016 ^a	3.68ª
	Cu ₃ PS ₄	Pmn2 ₁	<i>d</i> ₃₃ = -6.79 ^a	0.048ª	2.51
	Ag_3PS_4	Pmn2 ₁	d ₃₃ = -7.58ª	0.039 ^a	2.88ª
	$HgGa_2S_4$	<i>I</i> 4	<i>d</i> ₃₆ = 31.5	0.054	2.84
	$CdGa_2S_4$	IĪ4	<i>d</i> ₃₆ = 15.83 ^a	0.042ª	3.44
	$ZnGa_2S_4$	<i>I</i> 4	<i>d</i> ₃₆ = 11.92 ^a	0.029 ^a	3.60
	$Zn_3(PS_4)_2$	P4n2	d _{pow} = 15.92	0.035ª	3.07
	InPS ₄	IĪ4	<i>d</i> ₃₆ = 25	0.048	3.12
	LiZnPS ₄	IĪ4	$d_{pow} = 11.70$	0.072ª	3.44
	$AgZnPS_4$	Pna2 ₁	<i>d</i> _{pow} = 23.40	0.051ª	2.76
	$AgCd_2GaS_4$	Pmn2 ₁	$d_{33} = -26.98^{a}$	0.059ª	2.15
	$CuZn_2AIS_4$	$I^{\overline{4}}{}_{2}m$	<i>d</i> ₃₆ = 7.94 ^a	0.006ª	1.69
	$Ag_4CdGe_2S_7$	Сс	<i>d</i> ₃₆ =14.51	/	2.45
	$Ag_4HgGe_2S_7$	Сс	<i>d</i> ₃₆ =23.07	/	2.17
	Li ₄ HgGe ₂ S ₇	Сс	1.5AGS	/	3.11
	Cu_2CdSnS_4	I ⁴ ₂m	<i>d</i> ₃₆ = -25.42 ^a	0.134ª	0.92
	Cu_2HgGeS_4	$I^{\overline{4}}{}_2m$	$d_{36} = 44.23^{a}$	0.024ª	1.12ª
Quaternary	Cu_2ZnSnS_4	$\overline{4}$	<i>d</i> ₃₆ = 32.62 ^a	0.141ª	1.50
diamond like	Li ₂ CdGeS ₄	Pmn2 ₁	<i>d</i> ₃₃ =11.92 ^a	0.023ª	3.10
structures	Li ₂ CdSnS ₄	Pmn2 ₁	<i>d</i> ₃₃ =8.74 ^a	0.018ª	3.26
	α -Cu ₂ ZnSiS ₄	Pmn2 ₁	d ₃₃ =-10.06ª	0.052ª	3.00
	Li ₂ HgSiS ₄	Pmn2 ₁	0.8AGS	/	2.68
	Li ₂ HgGeS ₄	Pmn2 ₁	3.0AGS	/	2.46
	Li_2HgSnS_4	Pmn2 ₁	4.0AGS	/	2.32
	Li ₂ CdSiS ₄	Pmn2 ₁	1.0AGS	/	3.76
	Li ₂ MnGeS ₄	Pna2 ₁	d ₃₃ =9.92ª	0.010ª	3.07
	α -Li ₂ MnSnS ₄	Pna21	d ₃₃ =6.25 ^a	0.011ª	3.00
	Li ₂ ZnSiS ₄	Pna2 ₁	1.1AGS	/	3.90
	α-Li₂ZnGeS₄	Pna2 ₁	2.0AGS	/	4.07

TableS8. Structures and optical properties of Diamond Like-type compounds.

	Li ₂ ZnSnS ₄	Pn	<i>d</i> ₁₁ =12.84 ^a	0.015ª	2.87
	Ag_2ZnSiS_4	Pn	<i>d</i> ₁₁ =11.60 ^a	0.034ª	3.28
	β-Cu₂ZnSiS₄	Pn	<i>d</i> ₁₁ =12.02 ^a	0.035 ^a	3.20
	β-Li₂MnSnS₄	Pn	/	/	2.60 ^a
	β -Li₂ZnGeS₄	Pn	0.7AGS	/	3.49
	Li ₂ ZnGeSe ₄	Pn	χ ⁽²⁾ =19	/	1.86
	Li ₂ ZnSnSe ₄	Pn	χ ⁽²⁾ =23	/	1.87
Diamond like	Li ₂ MnSnSe ₄	Pmn2 ₁	0.5AGS	/	2.03
	Li ₂ CdGeSe ₄	Pna2 ₁	$\chi^{(2)}=25.6$	/	2.50
type metal	Li ₂ CdSnSe ₄	Pna2 ₁	$\chi^{(2)}=25.3$	/	2.20
selenides	RbGaSn₂Se ₆	R3	4.2AGS	0.051@2050 nm	1.80
	RbInSn ₂ Se ₆	R3	4.8AGS	0.067@2050 nm	1.92
	Li ₄ HgSn ₂ Se ₇	Сс	3.6AGS	/	2.10