Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2023

Supplementary Materials for

Low-temperature oxidative coupling of methane over

LaCeZr ternary oxides supported Mn-Na₂WO₄

Junxing Wang[†], Fangwei Liu[†], Jianzhou Wu^{*}, Shihui Zou^{*}, Jie Fan^{*}

†These authors contribute equally to this work

*Corresponding authors

Email: jfan@zju.edu.cn; xueshan199@163.com; wjzclig@zju.edu.cn

This PDF file includes:

Equations Figure S1-S3 Table S1-S3

Equations:

The CH₄ conversion and products selectivity were calculated based on a carbon atom basis of the inlet and outlet gases.

$$CH_4 Conv. = \left(1 - \frac{nCH_{4outlet}}{nCH_{4outlet} + \sum x \times n[products]_{outlet}}\right) \times 100\% \# (1)$$

where x is the number of carbon atom in the products.

The products selectivity was calculated on a carbon atom basis of the outlet products (i.e., C₂H₄,

a ..

 $C_2H_6,\,CO,\,CO_2,\,C_3H_6$ and $C_3H_8).$ C_2 products include both C_2H_4 and $C_2H_6.$

$$C_2 Sel. = \frac{2 \times nC_2 H_4 + 2 \times nC_2 H_6}{2 \times nC_2 H_4 + 2 \times nC_2 H_6 + 1 \times nCO + 1 \times nCO_2 + 3 \times nC_3 H_6 + 3 \times nC_3 H_8} \times 100\% \# (2)$$

$$CO Sel. = \frac{1 \times nCO}{2 \times nC_2 H_4 + 2 \times nC_2 H_6 + 1 \times nCO + 1 \times nCO_2 + 3 \times nC_3 H_6 + 3 \times nC_3 H_8} \times 100\% \# (3)$$

$$CO_2 Sel. = \frac{1 \times nCO_2}{2 \times nC_2H_4 + 2 \times nC_2H_6 + 1 \times nCO + 1 \times nCO_2 + 3 \times nC_3H_6}$$

 C_2 Yield = CH_4 Conv. $*C_2$ Sel. *100%#(5)

The following formula was used for the calculating of carbon balance, where x is the number of carbon atom in the products. Generally, a >95% carbon balance could be gained.

 $Carbon \ balance = \frac{nCH_{4outlet} + \sum_{x \in n[products]_{outlet}} x \times n[products]_{outlet}}{nCH_{4inlet}} \times 100\% \# (6)$

Figure S1. The catalytic performance of the LaCeZr support in OCM.

Figure S2. (a) The schematic diagram and (b) the photograph of the quartz fix-bed reactor.

Figure S3. C₂ yields as a function of O_2^{-}/O^{2-} ratio. Reaction conditions: $T = 703 \pm ^{\circ}C$, $CH_4:O_2 = 5:1$, total gas flow rate 66 mL min⁻¹.

J	1	2	-		7 2	
CH4/O2 ratio	T (°C)	CH ₄ Conv. (%)	SC2 (%)	YC ₂ (%)	O ₂ Conv. (%)	C ₂ H ₄ :C ₂ H ₆ molar ratio
6	700	5.3	24.8	1.3	27.9	/
5	701	26.4	59.4	15.7	98.5	1.0
4	700	32.3	58.5	18.9	98.0	1.2
3	700	37.6	55.4	20.9	98.5	1.6

Table S1: Catalytic performances of Mn-Na $_2WO_4$ /LaCeZr with different CH $_4$ /O $_2$ ratio.

 SC_2 : C_2 selectivity; YC_2 : C_2 yield.

Reaction conditions: $CH_4:O_2$ varied from 6:1 to 3:1, total gas flow rate 66 mL min⁻¹, GHSV 4,000 mL $h^{-1} g_{cat}^{-1}$.

Entry	Т (°С)	Catalyst ^a	GHSV ^b (mL g _{cat} ⁻¹ h ⁻¹)	CH ₄ :O ₂ : X ^c	CH4 Conv. (%)	SC ₂ (%)	YC ₂ (%)	Ref.
1	660	Mn ₂ O ₃ - Na ₂ WO ₄ /Ce _{0.15} Zr _{0.85} O ₂	4000	5:1:0	25.0	67.0	16.8	[30]
2	680	MnO _x -Na ₂ WO _{4/} A- SiO ₂	10000	5:1:0	23.0	72.0	16.6	[18]
3	650	Mn ₂ O ₃ -TiO ₂ - Na ₂ WO ₄ /SiO ₂	8000	5:1:4	22.0	62.0	13.6	[17]
4	700	TiO ₂ -modified Mn ₂ O ₃ -Na ₂ WO ₄ /SiO ₂	8000	5:1:4	23.0	73.0	16.8	[32]
5	500	La ₂ O ₃	36000	3:1:0	28.0	40.0	11.2	[33]
6	500	Sr–La ₂ O ₃	72000	3:1:0	35.0	47.0	16.5	[34]
7	570	La ₂ O ₃ /5NaWSi	20000	3:1:2.6	31.0	34.2	10.6	[35]
8	450	La ₂ O ₂ CO ₃	30000	3:1:0	30.2	48.5	14.7	[36]
9	550	La ₂ Ce ₂ O ₇	18000	4:1:5	28.0	52.0	14.6	[37]
10	375	$La_{0.8}Ce_{0.2}O_{1.5+\delta}$	30000	3:1:0	29.2	43.0	12.6	[38]
11	720	Li/MgO	-	2:1:0	37.8	50.3	19.0	[39]
12	500	Sm_2O_3	72000	3:1:0	28.0	42.0	11.8	[40]
13	500	Sr-Sm ₂ O ₃	72000	3:1:0	29.0	48.0	13.9	[40]
14	720	LiCa ₂ Bi ₃ O ₄ Cl ₆	-	2:1:7	41.7	46.5	19.4	[41]
15	710	Mn-Na ₂ WO ₄ /ZrCeLa	4000	3:1:0	37.6	55.4	20.9	This work

Table S2. Representative catalysts for low-temperature oxidative coupling of methane.

^{*a*}Elemental compositions of the catalysts. ^{*b*}Gas hourly space velocity. ^{*c*}CH₄/O₂/balance (N₂, He, or Ar in the corresponding references).

La ratio	T (°C)	CH4 Conv. (%)	SC ₂ (%)	YC ₂ (%)	O ₂ Conv. (%)	C ₂ H ₄ :C ₂ H ₆ molar ratio
La = 0	700	20.6	47.5	9.8	96.3	0.6
La = 0.5	700	21.0	57.4	12.1	95.8	0.7
La = 1.0	701	26.4	59.4	15.7	98.5	1.0
La = 2.0	706	23.5	57.6	13.5	97.6	0.8
La = 4.0	699	8.0	43.0	3.4	15.6	/

Table S3: Catalytic performances of Mn-Na2WO4/LaCeZr with different La ratio in support.

SC₂: C₂ selectivity; YC₂: C₂ yield.

Reaction conditions: $CH_4:O_2 = 5:1$, total gas flow rate 66 mL min⁻¹, GHSV 4,000 mL h⁻¹ g_{cat}⁻¹.

References :

[30] W. Sun, Y. Gao, G. Zhao, J. Si, Y. Liu, Y. Lu, Mn_2O_3 - Na_2WO_4 doping of $Ce_xZr_{1-x}O_2$ enables increased activity and selectivity for low temperature oxidative coupling of methane, J. Catal., 400 (2021) 372-386.

[18] J. Si, G. Zhao, W. Sun, J. Liu, C. Guan, Y. Yang, X.R. Shi, Y. Lu, Oxidative coupling of methane:
Examining the inactivity of the MnO_x-Na₂WO₄/SiO₂ catalyst at low temperature, Angew. Chem. Int. Ed.,
61 (2022) e202117201.

[17] P. Wang;, G. Zhao;, Y. Wang;, Y. Lu., MnTiO₃-driven low-temperature oxidative coupling of methane over TiO₂-doped Mn₂O₃-Na₂WO₄/SiO₂ catalyst, Sci Adv, 3 (2017) e1603180.

[32] P. Wang, X. Zhang, G. Zhao, Y. Liu, Y. Lu, Oxidative coupling of methane: MO_x -modified (M = Ti, Mg, Ga, Zr) Mn_2O_3 - Na_2WO_4 /SiO₂ catalysts and effect of MO_x modification, Chin. J. Catal., 39 (2018) 1395-1402.

[33] P. Huang, Y. Zhao, J. Zhang, Y. Zhu, Y. Sun, Exploiting shape effects of La₂O₃ nanocatalysts for oxidative coupling of methane reaction, Nanoscale, 5 (2013) 10844-10848.

[34] J. Song, Y. Sun, R. Ba, S. Huang, Y. Zhao, J. Zhang, Y. Sun, Y. Zhu, Monodisperse Sr-La₂O₃ hybrid nanofibers for oxidative coupling of methane to synthesize C₂ hydrocarbons, Nanoscale, 7 (2015) 2260-2264.

[35] S. Zou, Z. Li, Q. Zhou, Y. Pan, W. Yuan, L. He, S. Wang, W. Wen, J. Liu, Y. Wang, Y. Du, J. Yang,
L. Xiao, H. Kobayashi, J. Fan, Surface coupling of methyl radicals for efficient low-temperature oxidative coupling of methane, Chin. J. Catal., 42 (2021) 1117-1125.

[36] Y. Hou, W. Han, W. Xia, H. Wan, Structure sensitivity of La₂O₂CO₃ catalysts in the oxidative coupling of methane, ACS Catal., 5 (2015) 1663-1674.

[37] Y. Zhang, J. Xu, X. Xu, R. Xi, Y. Liu, X. Fang, X. Wang, Tailoring La₂Ce₂O₇ catalysts for low temperature oxidative coupling of methane by optimizing the preparation methods, Catal. Today, 355 (2020) 518-528.

[38] R. Feng, P. Niu, B. Hou, Q. Wang, L. Jia, M. Lin, D. Li, Synthesis and characterization of the flower-like LaCe_{1-O_{1.5+} catalyst for low-temperature oxidative coupling of methane, J Energy Chem, 67 (2022) 342-353.}

[39] K. Kwapien, J. Paier, J. Sauer, M. Geske, U. Zavyalova, R. Horn, P. Schwach, A. Trunschke, R. Schlogl, Sites for methane activation on lithium-doped magnesium oxide surfaces, Angew Chem Int Ed

Engl, 53 (2014) 8774-8778.

[40] B. Fu, T. Jiang, Y. Zhu, Structural effect of one-dimensional samarium oxide catalysts on oxidative coupling of methane, J. Nanosci Nanotechnol., 18 (2018) 3398-3404.

[41] J.M. Thomas, W. Ueda, J. Williams, K.D.M. Harris, New families of catalysts for the selective oxidation of methane, Faraday Discuss. Chemi. Soc., 87 (1989) 33-45.