Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Hydrogen spillover effects in the Fischer-Tropsch reaction over carbon nanotube supported cobalt catalysts

Heng Zhang, † Anliang Dong, † Bing Liu, Jie Chen, Yuebing Xu, Xiaohao Liu*

Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University, 214122 Wuxi, China

[†]These authors contributed equally to this work

*Corresponding author: <u>liuxh@jiangnan.edu.cn</u>

Fig. S1 TEM images of the (a) Co-100, (b) Co-125, (c) Co-175, and (d) Co-200 catalysts.

Fig. S2 TEM images and particle size of the fresh (a, d), reduced (b, e), and spent (c, f) 12Co/CNTs-IWI and 19Co/CNTs-IWI, respectively.

Fig. S3 TEM images and particle size of the reduced catalysts: (a) 12Co/SiO₂-IWI, and (b) 19Co/SiO₂-IWI, respectively.

Fig. S4 XRD patterns of the CNTs support (a), fresh (b), reduced (c), spent (d) Co/CNTs-IWI catalysts, and standard references (e).

Fig. S5 XRD patterns of the fresh and reduced 12Co/SiO₂ and 19Co/SiO₂ catalysts.

Fig. S6 H₂-TPR-MS profiles of the CNTs support: (a) H₂-TPR; (b) MS. Note that: The intensity of vertical axis in a is 1/32 of that in Figure S7. And that in b is ranged from 1×10^{-13} to 2×10^{-12} .

Fig. S7 H_2 -TPR profiles of the fresh Co/CNTs-IWI catalysts.

Fig. S8 H_2 -TPR profiles of the fresh Co/SiO₂-IWI catalysts.

Fig. S9 Raman spectra of the fresh and reduced Co/CNTs-IWI catalysts (a), and the corresponding calculated I_D/I_G values (b).

Fig. S10 Structural model for Co_4 cluster absorbed on outside surface of CNT.

Fig. S11 Structural models for hydrogen spillover from (a) Co_4 cluster to (b) pristine CNT.

Fig. S12 The illustration of defect carbon sites in CNT.

Fig. S13 Structural models for hydrogen spillover from (a) Co_4 cluster to (b) V_3 defect site.

Fig. S15 Structural models for hydrogen spillover from (a) Co_4 cluster to (b) V_1 and (c) V_2 defect sites.

Fig. S16 Structural model for Co_4 cluster absorbed on outside surface of CNT with COOH group.

Fig. S17 Structural models for hydrogen spillover from (a) Co_4 cluster to (b) V_3 defect site and (c) O site.

Fig. S18 Structural models for hydrogen spillover from (a) Co_4 cluster to (b) V_1 and (c) V_2 defect sites.

Fig. S19 Structural models for Co_4 cluster loaded inside (a) pristine CNT and (b) defect CNT.

Fig. S20 Structural models for hydrogen spillover from Co_4 cluster to (a) pristine CNT and (b) V_3 defect site.

Fig. S21 Structural models for hydrogen spillover from Co_4 cluster to (a) V_1 and (b) V_2 defect sites.

Fig. S22 Catalytic performance of the FTS reaction over unsupported cobalt catalysts: (a) CO conversion; (b) CH₄ selectivity; (c) Selectivity to C₂-C₄ paraffins; (d) Selectivity to C₂-C₄ olefins. Reaction conditions: 0.5 g of catalyst, T = 240 °C, P = 1 MPa, the molar ratio of H₂/CO/N₂ = 63.3/31.7/5, and GHSV=4.5 L g_{cat}⁻¹h⁻¹.

Fig. S23 Selectivity to C_{5+} in the FTS reaction over unsupported and CNT supported cobalt catalysts. Reaction conditions: T = 240 °C, P = 1 MPa, and the molar ratio of H₂/CO/N₂ = 63.3/31.7/5; (a) 1g of catalyst, GHSV=2.22 L g_{cat}⁻¹h⁻¹; (b) 0.5 g of catalyst, GHSV=4.5 L g_{cat}⁻¹h⁻¹.

Catalysts	Surface areas	Pore volume	Pore size	Particle size	Metallic Co
	$(m^2 g^{-1})$	$(cm^3 g^{-1})$	(nm)	(nm) ^a	$(wt\%)^b$
Co-100	141.6	0.17	3.8	8.4	57.3
Co-125	116.9	0.24	3.8	10.2	64.5
Co-175	49.6	0.33	30.8	16.9	69.1
Co-200	44.1	0.34	31.1	18.4	70.2
Co-100-R	8.6	0.04	3.4		
Co-125-R	7.4	0.02	3.1		
Co-175-R	6.5	0.03	3.8		
Co-200-R	5.2	0.02	3.1		
Co/CNTs-100-S	45.5	0.66	3.9	20	
Co/CNTs-125-S	23.5	0.40	3.7	31	
Co/CNTs-175-S	13.4	0.19	3.8	46	
Co/CNTs-200-S	6.1	0.19	3.1	48	

Table S1 Textural properties of catalysts.

^aFrom TEM images. ^bFrom ICP-OES.

Table S2 Catalytic performance of unsupported cobalt catalysts in the FTS reactions.

Catalysts	X _{CO}	S _{CO2}	Hydroca	Hydrocarbon selectivity (%)			O/O+P	TOF
	(%)	(%)	CH_4	$C_2^{=}-C_4^{=}$	$C_2^{o}-C_4^{o}$	C_{5+}	(%)	(10^{-2} s^{-1})
Co-200	34.2	0.7	19.4	6.6	8.8	65.1	65.1	
Co-175	38.4	0.6	19.9	6.0	7.7	66.3	66.3	
Co-125	42.7	0.7	18.6	6.5	8.2	66.7	66.3	
Co-100	29.5	0.6	16.5	6.7	7.5	69.2	69.2	

Reaction conditions: 0.5 g of catalyst, 240 °C, 1 MPa, $H_2/CO/N_2 = 63.3/31.7/5$ (molar ratio), GHSV = 4.5 L $g_{cat}^{-1}h^{-1}$. The values for catalytic activity and selectivity were obtained by averaging the tested results in last 5 h.

Table S3 Summary of the elementary reaction steps on [1010], [0002] and [1011] crystal planes for CO dissociation, methane formation, and carbon-carbon coupling.

Reactions	$10\bar{1}0(\Delta E/eV)$	0002(ΔE /eV)	$10\bar{1}1(\Delta E/eV)$
CO→CO*	-1.80 (3f)	-1.62(1f)/-1.60(2f)/-1.64(3f)	-1.86(3f)/-1.92(4f)
$CO^* \rightarrow C^* + O^*$	0.88	0.97	-0.55
CHO*→CH*+O*	-0.64	-0.44	-1.41
$CH_2O^* \rightarrow CH_2^* + O^*$	-0.50	-0.61	-0.90
$CH_3O^* \rightarrow CH_3^* + O^*$	-0.34	-0.24	-0.38
$CH_2^*+H\rightarrow CH_3^*$	-0.55	-0.23	0.30
CH_3 *+H→ CH_4 *	0.08	0.07	0.00
$CH_2^* + CH_2^* \rightarrow C_2H_4^*$	-0.88	-0.55	-0.38