Supplementary Material

Insight into the electronic modulation of bimetallic Pt-Sn cluster for selective hydrogenation of 1,3-butadiene

Nengfeng Gong ^{a,b,c,1}, Huizi He ^{d,1}, Hongliu Wan ^{*,a,c}, Huaming Hou ^c, Ziyu Zhou ^{a,b,c}, Yibo Yang ^{a,b,c}, Gaolei Qin ^{a,b,c}, Anping Yin ^{a,b,c}, Yuhang Cai ^{a,b,c}, Xiaodong Sun ^{*a,c}, Yongwang Li ^{a,b,c}, Zhi Cao ^{*,a,b,c}

^a State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, P.R. China

^b University of Chinese Academy of Sciences, Beijing 100049, P.R. China

^c Synfuels China Co., Ltd., Beijing 101400, P.R. China

^d State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, P.R. China

* Corresponding author

E-mail: wanhongliu@synfuelschina.com.cn (Hongliu Wan), sunxiaodong@synfuelschina.com.cn (Xiaodong Sun), and caozhi@sxicc.ac.cn (Zhi Cao). ¹ These authors contributed equally.

Catalanta		S	V+ 0/	Sn/Pt	CO uptake
Catalysts	Pt Wt.%	Sn wt.%	K Wt.%0	atomic ratio	(mol/gcat)
PtSn1/S-1	0.36	0.22	0.44	1.00	5.57
PtSn3/S-1	0.35	0.64	0.43	3.01	5.11
PtSn10/S-1	0.34	2.07	0.41	10.01	2.40

 Table S1.
 Elemental composition of PtSn catalysts determined by ICP-OES.

Fig. S1. Pt 4f spectra of reduced Pt/S-1 samples. The sample were reduced by H_2 at 600°C for 1 h prior to XPS measurement.

Fig. S2 The 1,3-butadiene conversion as a function of reaction temperature over different samples.

Fig. S3 The butene selectivity as a function of 1,3-butadiene conversion over PtSn/S-1 samples.

Fig. S4. Initial specific activity and butene selectivity of the PtSn/S-1 samples during hydrogenation of 1,3-butadiene in the absence of CO. All the samples were reduced by H_2 at 600 °C for 3h prior to catalytic evaluation. Reaction condition: 10 mg samples, 125 °C, 4 ml/min H_2 , 20 ml/min 2%1,3-butadiene/N₂.

Fig. S5 The 1,3-butadiene conversion as a function of reaction temperature over different samples in the presence of CO.

Fig. S6 The butene selectivity as a function of reaction temperature over different samples in the presence of CO.

Table S2. Catalytic performance for different PtSn catalysts in the 1,3-butadiene hydrogenation at 125°C. Data were acquired under the kinetic region with conversion <40% by tuning the space velocity.

Catalysts	TOF	TOF	Selectivity (%)				Butene
	(s ⁻¹) ^a	(s ⁻¹) ^b	1-butene	cis-2-butene	trans-2-butene	butane	sel. (%)
PtSn1/S-1	1.34	4.45	55.6	11.9	16.9	15.6	84.4
PtSn3/S-1	0.74	2.58	58.0	11.8	17.9	12.3	87.7
PtSn10/S-1	0.10	0.71	49.8	11.7	16.9	21.6	78.4

^a TOF is determined by the overall content of Pt in the catalysts.

^b TOF is determined by CO uptake.

Table S3. Catalytic performance for different PtSn catalysts among the 1,3-butadiene hydrogenation at 125°C in the presence of CO. Data was acquired under the kinetic region with conversion <40% by tuning the space velocity.

Catalysts	TOF		D_{-1} (0/)			
	(h ⁻¹) ^a	1-butene	cis-2-butene	trans-2-butene	butane	Butene sel. (%)
PtSn1/S-1	0.36	56.0	12.4	19.5	12.1	87.9
PtSn3/S-1	0.41	54.3	14.9	23.2	7.6	92.4
PtSn10/S-1	0.08	54.1	12.5	18.8	14.5	85.5

^a TOF is determined by the overall content of Pt in the catalysts.

Fig. S7 H_2 - D_2 exchange profile of PtSn1/S-1 samples after reduction in H_2 at 600 °C for 3 h.

Fig. S8 H_2 - D_2 exchange profile of PtSn3/S-1 samples after reduction in H_2 at 600 °C for 3 h.

Fig. S9 H_2 - D_2 exchange profile of PtSn10/S-1 samples after reduction in H_2 at 600 °C for 3 h.

Fig. S10. Proposed correlation between the energy barrier of H₂ dissociation and intrinsic hydrogenation of activity and butene selectivity.