Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2023

Supporting Information

CO₂ capture and conversion to syngas via the dry reforming of C₃H₈ over

Pt/ZrO₂-CaO catalyst

Jingjing Dong, Yang Peng, Juanting Li, Zhong-wen Liu, Rongrong Hu*

Key Laboratory of Syngas Conversion of Shaanxi Province, School of Chemistry & Chemical

Engineering, Shaanxi Normal University, Xi'an 710119, Shaanxi, China

* To whom correspondence should be addressed. rrhu@snnu.edu.cn

FIGURE AND TABLE CAPTIONS

Figure S1. N₂ adsorption-desorption isotherm (A), pore size distribution (B) of the fresh Pt/ZrO_2 -*x*CaO catalysts

Figure S2. XRD pattern of Pt/ZrO₂-xCaO after capturing CO₂ at 600 °C for 2 h

Figure S3. The CO_2 carbonation-calcination performance of Pt/ZrO₂-30CaO at different desorption temperatures

Figure S4. The result of CO₂ capture and conversion in Ar over ZrO_2 -30CaO Capture condition: 600 °C, 20% CO₂/N₂/Ar, conversion condition: 600 °C, 5 % C₃H₈ /Ar/N₂, release condition: 700 °C, N₂

Figure S5. The CO₂ carbonation performance of the spent Pt/ZrO_2 -xCaO catalysts at 600 °C for 60 min

Figure S1. N₂ adsorption-desorption isotherm (A), pore size distribution (B) of the fresh Pt/ZrO_2 -*x*CaO catalysts

Figure S2. XRD patterns of Pt/ZrO₂-*x*CaO after capturing CO₂ at 600 °C for 2 h.

Figure S3. The CO₂ carbonation-calcination performance of Pt/ZrO₂-30CaO at different desorption temperatures

carbonation conditions: 600 °C in 20% CO₂/Ar, calcination condition: 700, 650, 600,

550°C in Ar

Figure S4. The result of CO₂ capture and conversion in Ar over ZrO₂-30CaO Capture condition: 600 °C, 20% CO₂/N₂/Ar, conversion condition: 600 °C, 5 % C₃H₈ /Ar/N₂, release condition: 700 °C, N₂

Figure S5. The CO₂ carbonation performance of the spent Pt/ZrO₂-xCaO catalysts at 600 °C

for 60 min