Topotactic Transformation of Metal-Organic Frameworks to Iron-

based Catalysts for the Direct Hydrogenation of CO₂ to Olefins

Qingqing Yang^{a,b}, Ruifeng Wang^b, Xiong Zhang^b, Shifu Wang^b, Qi Yu^{*a} Xiong Su^{*b}, Xuning Li^{*b}, and Yanqiang Huang^b

- ^a School of Materials Science and Engineering, and Shaanxi Laboratory of Catalysis, Shaanxi University of Technology, Hanzhong 723001, China
- ^b State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China

Corresponding author:

<u>qiyu@snut.edu.cn (Q. Yu); suxiong@dicp.ac.cn (X. Su); lixn@dicp.ac.cn</u> (X. Li)

Figure S1 The (a) SEM and (b) TEM images of Fe-MIL-88; and the SEM images of (c) Fe/C, (d) NiFe/C, (e) ZnFe/C and (f) MnFe/C.

Figure S2 Particle distribution of the fresh MFe/C catalysts. (a) Fe/C, (b) NiFe/C, (c) ZnFe/C and (d) MnFe/C.

Figure S3 The EDS elemental mapping of the fresh MFe/C catalysts. (a) Fe/C, (b) NiFe/C, (c) ZnFe/C and (d) MnFe/C.

Figure S4 The EDS of the fresh MFe/C catalysts. (a) Fe/C, (b) NiFe/C, (c) ZnFe/C and (d) MnFe/C.

Figure S5 The physical and chemical properties of the MFe/C catalysts: (a) XRD patterns of spent MFe/C catalysts; (b) Ni 2p XPS spectra of fresh and spent NiFe/C; Zn 2p XPS spectra of (c) fresh and (d) spent ZnFe/C; Mn 2p XPS spectra of (e) fresh and (f) spent MnFe/C.

Figure S6 The XRD patterns (a) and Mössbauer spectra (b) of MnFe/C catalysts after H_2 reduction.

Figure S7 Unit cell structure of Fe at different sites in Fe₅C₂: The cell crystal structure (a) and 3x3x3 crystal structure (b) of Fe₅C₂.

	1 1	5		
Samples	Fe Contents (wt%)	M ²⁺ contents (wt%)	Fe/M ratio	Crystalline size (nm)ª
Fe/C	54.5	-	-	23.8
ZnFe/C	45.8	4.5	10.2	15.7
NiFe/C	48.7	5.8	8.4	21.4
MnFe/C	53.8	4.9	11.0	11.5

Table S1 Textural properties of the MFe/C catalysts.

 $^{\rm a}$ The average crystalline sizes of Fe $_3{\rm O}_4$ in MFe/C catalysts calculated by Scherrer equation.

Sample	Fe Contents (wt%)	M ²⁺ contents (wt%)
Fe/C	62.7	-
NiFe/C	10.2	1.8
ZnFe/C	38.2	2.9
MnFe/C	40.1	3.2

Table S2 Properties of iron-based catalysts by EDS.

	Assignment	IS	05	Lino	Ահք	Relative
Samples		13	Q 5			Abundance
			(mm s ⁻)	wiath	(KOe)	(%)
E /C	$Fe_3O_4(A)$	0.28	-0.01	0.41	489	51.1
Fe/C	$Fe_3O_4(B)$	0.58	0.00	0.66	454	48.9
	Fe ₂ O ₃	0.35	0.13	0.58	432	12.4
	Fe ₅ C ₂ (II)	0.19	0.03	0.43	209	32.9
MnFe/C	Fe ²⁺ (super) ^a	1.04	0.62	0.58	-	29.6
	Fe(super) ^a	-0.00	0.00	0.90	-	11.9
	Fe	-0.02	-	0.58	329	13.3
	Fe ₅ C ₂ (II)	0.20	0.02	0.88	200	61.8
ZnFe/C	Fe ²⁺ (super) ^a	1.08	0.53	0.52	-	16.6
	Fe ³⁺ (super) ^a	0.28	0.77	0.86	-	21.6
	Fe ₃ O ₄ (A)	0.29	-0.01	0.32	491	42.9
N1Fe/C	$Fe_3O_4(B)$	0.64	0.00	0.52	459	57.1

Table S3 Detailed Mössbauer parameters of the fresh catalysts.

asuperparamagnetic

	D	T (°C)	GHSV	CO_2		STY		
Samples	P		(mL h ⁻¹	Con. (S_{C5^+}	$(mol_{C5+}g$	Ref.	
	(MPa)		gcat ⁻¹)	%)		$_{cat}^{-1}h^{-1})$		
N-600-0	3	400	3600	46.0	22.2	0.05	1	
N-K-600-0	3	400	3600	43.1	15.4	0.03	1	
5Mn-Na/Fe	3	320	2040	38.6	42.1	0.05	2	
FeK/MPC	2.5	350	2000	52.4	33.2	0.05	3	
00/04		200	20000	22.50	20.2	0.00	4	
0%Mn	-	290	20000	33.78	8	0.22	4	
Fe-K	1.5	320	10000	35.1	21.9	0.11	5	
ZnFe ₂ Ox	1.0	300	2400	34.6	20.4	0.02	6	
10Fe3Cu1K/Al ₂ O ₃	3	400	33600	41.7	13.8	0.27	7	
FeZnNa/MWNTs	2	320	9000	36.5	37.2	0.17	8	
FeK3/SWNTs	2	340	9000	53	56	0.38	9	
Na-Zn-Fe	2.5	340	15000	39	40.5	0.34	10	
			13000	27 (0	27 A		This	
NINF e/C	2	400	12000	3/.60	57.9	0.27	work	

Table S4 Comparison of the CO_2 hydrogenation performance of the MnFe/C catalyst in this work with the previously reported Fe-based catalysts.

Floment		fresh				spent			
Liement	Fe/C	NiFe/C	MnFe/C	ZnFe/C	Fe/C	NiFe/C	MnFe/C	ZnFe/C	
Fe	4.52	-	4.02	2.68	3.66	1.53	2.25	4.54	
Na	1.56	0.77	-	4.86	3.27	2.94	3.14	3.44	
0	21.21	11.46	19.98	23.33	16.79	13.59	14.7	17.19	
С	72.71	84.74	75.99	69.13	76.27	81.94	79.91	70.55	

Table S5 Surface composition of the various catalysts calculated by XPS.

Samples	Assignment	IS (mm s ⁻¹)	QS	Line Width	Hhf (kOe)	Relative Abundance
		(mm s ⁺)	(mm s -)	w iutii		(%)
	$Fe_3O_4(A)$	0.28	0.00	0.24	487	10.4
	$Fe_3O_4(B)$	0.67	0.00	0.45	457	23.7
Fe/C	$Fe_5C_2(I)$	0.20	0.00	0.38	184	23.5
	Fe ₅ C ₂ (II)	0.26	0.12	0.32	215	23.1
	Fe ₅ C ₂ (III)	0.18	0.01	0.54	109	19.3
	$Fe_5C_2(I)$	0.22	-0.04	0.38	186	34.4
MnFe/C	Fe ₅ C ₂ (II)	0.24	0.11	0.32	216	33.1
	Fe ₅ C ₂ (III)	0.13	0.00	0.61	106	32.5
	Fe ₃ O ₄ (A)	0.28	0.05	0.34	485	4.7
	$Fe_3O_4(B)$	0.67	-0.08	0.52	446	8.0
	$Fe_5C_2(I)$	0.16	0.09	0.40	185	30.4
ZnFe/C	Fe ₅ C ₂ (II)	0.25	0.11	0.32	215	27.2
	Fe ₅ C ₂ (III)	0.22	0.11	0.30	110	16.5
	super	0.39	0.77	0.58	-	13.2
	$Fe_3O_4(A)$	0.28	0.00	0.28	488	20.4
	$Fe_3O_4(B)$	0.66	-0.01	0.35	459	28.6
	$Fe_5C_2(I)$	0.21	-0.03	0.56	182	23.8
INIF e/C	Fe ₅ C ₂ (II)	0.25	0.12	0.33	210	10.5
	Fe ₅ C ₂ (III)	0.18	-0.12	0.45	105	11.2
	super	0.21	0.94	0.39	-	5.5

Table S6 Detailed Mössbauer parameters of the spent catalysts.

asuperparamagnetic

Samples	Assignment	IS QS		Line	Hhf	Relative Abundance
		(mm s ⁻¹)	(mm s ⁻¹)	Width	(kOe)	(%)
MnFe/C	Fe ₅ C ₂ (II)	0.19	0.03	0.42	210	24.3
	Fe ²⁺ (super) ^a	1.04	0.65	0.58	-	31.0
	Fe(super) ^a	0.04	-8.46	1.02	-	14.2
	Fe	0.00	-	0.28	331	30.4

Table S7 Detailed Mössbauer parameters of MnFe/C catalysts after $\rm H_2$ reduction.

Deferences	Samplas	Olefins	O/P	Fe_5C_2	Fe ₅ C ₂
	Samples	selectivity	U/F	(II)	(II)
	0Na/Fe	6.0	0.2	3.0	1.4
	0.01Na/Fe	11.8	0.3	3.7	1.9
	0.05Na/Fe	39.4	1.3	6.0	3.1
11	0.1Na/Fe	56.8	3.1	10.0	4.7
	0.5Na/Fe	64.3	5.3	10.4	6.8
	1.0Na/Fe	64.1	5.3	11.3	5.0
	3.0Na/Fe	64.1	5.4	10.3	4.4
	5.0Na/Fe	63.6	5.3	9.9	5.3
	1Na/Fe	23.4	11.0	11.3	5.0
	0.1Mn–Na/Fe	24.1	9.5	10.7	6.5
2	1Mn–Na/Fe	25.1	8.2	12.7	7.3
	5Mn–Na/Fe	30.2	7.5	28.4	17.6
	10Mn–Na/Fe	29.2	6	14.9	7.8
	FeZnNa/MWNTs	67.1	5.99	26.2	13.4
8	FeZnK/MWNTs	66.8	6.42	22.8	19.0
8	FeZnRb/MWNTs	62.7	5.35	18.1	16.8
	Fe/SWNTs	5.4	0.6	14.6	2.7
	FeK1/SWNTs	12	0.8	17.6	8.7
9	FeK3/SWNTs	23	0.6	20.1	9.7
	FeK5/SWNTs	25	1.6	22.4	10.8
	FeK7/SWNTs	27	1.8	20.2	5.3
	Fe	5.9	0.13	1.5	0.6
	Zn-Fe	5.3	0.11	1.4	0.1
10	Na-Fe	79	9.9	24	13
11 2 8 9 10	Na-Zn-Fe	80	9.8	34	25

Table S8 Summary of olefin selectivity and O/P and Fe_5C_2 content of different catalysts in CO_2 hydrogenation reactions

References

- J. Liu, A. Zhang, M. Liu, S. Hu, F. Ding, C. Song and X. Guo, J. CO₂ Util., 2017, 21, 100-107.
- B. Liang, T. Sun, J. Ma, H. Duan, L. Li, X. Yang, Y. Zhang, X. Su, Y. Huang and T. Zhang, *Catal. Sci. Technol.*, 2019, 9, 456-464.
- S.-M. Hwang, C. Zhang, S. J. Han, H.-G. Park, Y. T. Kim, S. Yang, K.-W. Jun and S. K. Kim, *J. CO*₂ Util., 2020, **37**, 65-73.
- 4. Z. Zhang, C. Wei, L. Jia, Y. Liu, C. Sun, P. Wang and W. Tu, *J. Catal.*, 2020, **390**, 12-22.
- 5. J. Huang, S. Jiang, M. Wang, X. Wang, J. Gao and C. Song, *ACS Sustainable Chem. Eng.*, 2021, **9**, 7891-7903.
- 6. L. Guo, J. Li, Y. Zeng, R. Kosol, Y. Cui, N. Kodama, X. Guo, R. Prasert, V. Tharapong, G. Liu, J. Wu, G. Yang, Y. Yoneyama and N. Tsubaki, *Fuel*, 2020, **276**.
- J. Liu, A. Zhang, X. Jiang, M. Liu, Y. Sun, C. Song and X. Guo, ACS Sustainable Chem. Eng., 2018, 6, 10182-10190.
- H. Singh Malhi, Z. Zhang, Y. Shi, X. Gao, W. Liu, W. Tu and Y.-F. Han, *Fuel*, 2023, 339, 127267-127277.
- 9. S. Wang, Y. Ji, X. Liu, S. Yan, S. Xie, Y. Pei, H. Li, M. Qiao and B. Zong, *ChemCatChem*, 2022, **14**, e202101535-202101545.
- 10. Z. Zhang, G. Huang, X. Tang, H. Yin, J. Kang, Q. Zhang and Y. Wang, *Fuel*, 2022, **309**, 122105-122117.
- 11. B. Liang, H. Duan, T. Sun, J. Ma, X. Liu, J. Xu, X. Su, Y. Huang and T. Zhang, *ACS Sustainable Chem. Eng.*, 2018, 7, 925-932.