Supplementary Information

A computational study of CO_2 hydrogenation on single atoms of Pt, Pd, Ni and Rh adsorbed on $In_2O_3(111)$

<u>Francesco Cannizzaro</u>, Sjoerd Kurstjens, Tom van den Berg, and Emiel J. M. Hensen* and Ivo A. W. Filot* *Laboratory of Inorganic Materials and Catalysis, Department of Chemistry and Chemical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands 5600 MB (NL)*

*E-mail: E.J.M.Hensen@tue.nl

*E-mail: i.a.w.filot@tue.nl

Table of Contents

S1: Binding energies of single atoms on In ₂ O ₃ (111)	2
S2: Electronic structure analysis	4
S3: Oxygen vacancies	5
S4. Geometries of elementary reaction steps on Ni-In ₂ O ₃ (111)	6
S5. Geometries of elementary reaction steps on Pd-In ₂ O ₃ (111)	8
S6. Geometries of elementary reaction steps on Pt-In ₂ O ₃ (111)	10
S7. Geometries of elementary reaction steps on Rh-In ₂ O ₃ (111)	12
S8: Parameters for microkinetic simulations	14
S9: Microkinetic simulations	18
S10: Additional DFT calculations	21
Supporting References	22

S1: Binding energies of single atoms on $In_2O_3(111)$

Fig. S1. Adsorption sites for single atoms on $In_2O_3(111)$. Blue: SA. Grey: In. Red: O.

Table S1. Adsorption energies (kJ/mol) of single atoms on the indicated by Fig. S1. The reference for the metal (Ni, Pd, Pt and Rh) is a single atom in the gas phase.

		E _b [kJ/mol]		
ID	Ni	Pd	Pt	Rh
1	-512	-339	-481	-355
2	-484	-328	-461	-425
3	-484	-318	-450	-401
4	-479	-311	-457	-383
5	-411	-309	-411	-346
6	-415	-305	-428	-328

	Ni-	In ₂ O ₃	Pd-	In ₂ O ₃	Pt-	In ₂ O ₃	Rh-	In ₂ O ₃
ID	E _R	Ea						
1 → 3	32	101	8	34	32	131	33	100
3→4	11	178	3	44	15	156	20	143
4→5	68	154	5	27	24	101	76	142

Table S2. Reaction and activation energies (kJ/mol) for the migration of SA (SA = Pd, Pt, Ni and Rh) on stable adsorption sites on the $In_2O_3(111)$ surface as shown in **Fig**.1.

S2: Electronic structure analysis

Fig. S2. Partial density of state (PDOS) of Ni 3*d*, Pd 4*d*, Pt 5*d* and Rh 4*d*, O 2*p* (the O atom adjacent to the metal SA) and In *d* orbitals. (a) Ni-In₂O₃, (b) Pd-In₂O₃, (c) Pt-In₂O₃ and (d) Rh-In₂O₃.

S3: Oxygen vacancies

Table S3. Oxygen vacancy formation energies with repsect to gas-phase H_2O (kJ/mol) for bare In_2O_3 and SA-promoted In_2O_3 surfaces.

ID	In ₂ O ₃	Ni-In ₂ O ₃	Pd-In ₂ O ₃	Pt-In ₂ O ₃	Rh-In ₂ O ₃
1	-61	139	-77	54	38
2	-61	140	-22	215	39
3	-60	139	-70	-35	105
4	-51	137	29	176	62
5	-51	149	25	173	39
6	-50	154	24	146	128
7	8	161	75	210	170
8	5	190	74	210	96
9	7	161	80	217	141
10	-6	161	53	217	125
11	-5	168	52	187	124
12	-5	169	52	185	123

Fig. S3. Positions of the 12 surface oxygens for the calculations reported in Table S2 (red: O; grey: In).

Table S4. Geometrical parameters (Å) and oxygen vacancy formation energy (E_{Ov} , in kJ/mol) for the O atom directly connected to the SA with the lowest E_{Ov} .

	Ni-In ₂ O ₃ (111)	Pd-In ₂ O ₃ (111)	Pt-In ₂ O ₃ (111)	Rh-In ₂ O ₃ (111)
d _{M-0} / Å	1.82	2.13	2.10	1.98
E _{ov} / kJ/mol	141	-71	-35	39

Fig. S4. Position of the SA on the $In_2O_3(111)$ surface after formation of an oxygen vacancy. (a) Ni-, (b) Pd-, (c) Pt- and (d) Rh- In_2O_3 . Brown: In, red: O, green: Ni, light blue: Pd, purple: Pt, orange: Rh.

S4. Geometries of elementary reaction steps CO₂ adsorption

Fig. S5. Bonding configurations of CO_2 on SA-In₂O₃ models. Red: O, black: C, pink: In, grey: Ni, Pd, Pt or Rh. The most stable configuration features CO_2 adsorbed near an oxygen vacancy with both O and C close to the single metal atom. Adsorption configurations depicted in Figure S5b-c are significantly less stable.

	E _{ads} (kJ/mol)				
	Ni-In ₂ O ₃	Pd-In ₂ O ₃	Pt-In ₂ O ₃	Rh-In ₂ O ₃	
(a)	-144	-31	-33	-87	
(b)	-44	+62	+16	-33	
(c)	-34	+28	+37	-24	

Table S5. Adsorption energies (kJ/mol) for the configurations reported in Figure S5.

Table S6. Ni-In₂O₃

1. $H_2 + 2 * \rightleftharpoons 2H^*$			2. $H^* + OH^*$	$\Rightarrow H_20^*$	
3. $H_20 + * =$	$\Rightarrow H_2 0^*$		4. $CO_2(g) +$	$* \rightleftharpoons CO_2^* +$	
5. $CO_2^* + 2*$	$+H_2 \rightleftharpoons CO_2^* + 2H$	Ι	6. $CO_2^* + 2H$	* <i>≓HCOO</i> * + * -	+ H *
7. <i>HCOO</i> [*] + <i>I</i>	$H^* \rightleftharpoons H_2 COO^* + *$:	8. H ₂ COO* ≓	$H_2 CO^* + O^*$	
$G_{1} CH_{2}O^{*} + H_{2}(g) + 2 * \rightleftharpoons CH_{2}O^{*} + 2H^{*}$			10. $CH_2O^* + H_2O^*$	$I^* \rightleftharpoons CH_3O^* + *$	
11. $CH_3O^* + H_3O^*$	$H^* \rightleftharpoons CH_3OH(g) +$	*			

12. <i>CO</i> [*] ₂ + *	$\Rightarrow CO^* + O^*$		13. $CO^* + H_2($	$g) + 2 * \rightleftharpoons CO^* +$	2 <i>H</i> *	
	h h h					
14. $CO^* + 2H$	$^* \rightleftharpoons HCO^* + H^*$		15. <i>HCO</i> * + <i>H</i>	$^* \rightleftharpoons H_2 CO^* + *$		
$10^{\circ} CO_{2}^{*} + H^{*}$	<i>≓C00H*</i> + *		17 $COOH^* + * \rightleftharpoons CO^* + OH^*$			
10. 2			17.			
$18 CO^* + OH$	$^* + H^* \rightleftharpoons H_2 O^* +$	C0 *	19. <i>C0</i> * <i>≓C0</i> (g	(y) + 0v	l	
$20. \ CO^* \rightleftharpoons CO(g) + *$						
					59	

Table S7. Pd-In₂O₃

12. $CO_2^* + * \rightleftharpoons CO^* + O^*$			13. $CO^* + H_2(g) + 2 * \rightleftharpoons CO^* + 2H^*$		
$14 CO^* \pm 2H$	*→HCO* ⊥ H*		HC0 * + H	* →H CO* + *	
14. 00 + 211	<u>~1100 + 11</u>		<u>15. ^{<i>n</i>co + <i>n</i>}</u>	$-\Pi_2 c c c + *$	
16. $CO_2^* + H^*$	<i>⇒COOH</i> * + *		17. $COOH^* + * \rightleftharpoons CO^* + OH^*$		
18. CO* + OH	$* + H^* \rightleftharpoons H_2 O^* +$	<i>CO</i> *	19. $CO^* \rightleftharpoons CO(g) + Ov$		
20. <i>CO</i> * <i>⇒CO</i> (,	g) + *				

Table S8. Pt-In₂O₃

1. $H_2 + 2 =$	2 <i>H</i> *		2. $H^* + OH^*$	$\Rightarrow H_20^*$	
3. $H_20 + *$	$\Rightarrow H_2 0^*$		4. $CO_2(g) +$	* <i>⇒C0</i> [*] ₂ +	
5. $CO_2^* + 2*$	$+H_2 \rightleftharpoons CO_2^* + 2H$	ł	6. $CO_2^* + 2H$	* <i>≓HCOO</i> * + * -	<i>⊢ H</i> *
7. <i>HCOO</i> *+.	$H^* \rightleftharpoons H_2 COO^* + *$	<	8. H ₂ COO* ⇒	$H_2 CO^* + O^*$	
9. $CH_2O^* + H_2O^*$	$H_2(g) + 2 * \rightleftharpoons CH_2C$	$D^* + 2H^*$	10. $CH_2O^* + H^* \rightleftharpoons CH_3O^* + *$		
11. $CH_3O^* + H_3O^*$	$H^* \rightleftharpoons CH_3OH(g) +$	*	1		
$12. \frac{CO_{2}^{*} + *}{2}$	$\Rightarrow CO^* + O^*$		13.		

			N.A.	N.A.	N.A.
14	•		15		
14.			15.		
N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
16. $CO_2^* + H^*$	$\Rightarrow COOH^* + *$		17. COOH* +	$* \rightleftharpoons CO^* + OH^*$	
18. <i>CO</i> * + <i>OH</i>	$^* + H^* \rightleftharpoons H_2 O^* +$	<i>CO</i> *	19. $CO^* \rightleftharpoons CO(g) + Ov$		
20. <i>C0</i> * <i>⇒C0</i> (g) + *				

Table S9. Rh-In₂O₃

			N.A.	N.A.	N.A.
	*	I		* . 11. 60 * .	I
14. $CO^{+} + 2H$	$\Rightarrow HCO^+ + H^+$	1	15. <i>HCO⁺ + H</i>	$\Rightarrow H_2 CO^2 + *$	1
N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
$CO_2^* + H^* \rightleftharpoons COOH^* + *$			17. <i>COOH</i> * +	$* \rightleftharpoons CO^* + OH^*$	
18. CO* + OH	* + $H^{*} \rightleftharpoons H_{2}O^{*}$ +	<i>CO</i> *	19. <i>C0</i> * <i>≓C0</i> (g) + Ov	
20, <i>CO</i> [*] <i>≓CO</i> ((g) + *	1		l	I

S5: Parameters for microkinetic simulations

Table S10. Kinetic parameters including ratio of partition functions of the TS and IS (Q_{TS}/Q_{IS}) and TS and FS (Q_{TS}/Q_{FS}) , forward $(E_{act,f})$ and backward $(E_{act,f})$ activation energies for CO₂ hydrogenation to CH₃OH, CO and H₂O over Ni-In₂O₃ model.

	Elementary steps	Q _{TS} /Q _{IS}	Q _{TS} /Q _{FS}	E _{act,f} (kJ/mol)	E _{act,b} (kJ/mol)
	Oxygen vacancy formation pathway				
1	$H_2(g) + 2 * \rightleftharpoons 2H^*$	0.20	0.57	19	55
2	$H^* + OH^* \rightleftharpoons H_2 O^* + O^*$	1.70	0.39	93	66
3	$H_20^* \rightleftharpoons H_2O(g) + *$	1.0	1.0	177	-
	Formate pathway to CH ₃ OH				
4	$CO_2(g) + * \rightleftharpoons CO_2^*$	1.0	1.0	-	144
5	$CO_{2}^{*} + H_{2}(g) + 2 * \rightleftharpoons CO_{2}^{*} + 2H^{*}$	0.20	0.57	19	55
6	$CO_2^* + 2H^* \rightleftharpoons HCO_2^* + H^* + *$	5.55	0.59	66	68
7	$HCO_2^* + H^* \rightleftharpoons H_2CO_2^* + *$	0.17	1.44	114	34
8	$H_2CO_2^* + * \rightleftharpoons CH_2O^* + O^*$	1.05	0.28	101	33
9	$CH_2O^* + H_2(g) + 2* \rightleftharpoons CH_2O^* + 2H^*$	0.20	0.57	19	55
10	$CH_2O^* + 2H^* \rightleftharpoons CH_3O^* + H^*$	0.47	0.54	55	132
11	$CH_3O^* + H^* \rightleftharpoons CH_3OH_{(g)}$	0.06	0.61	61	54
	CO hydrogenation pathway to CH_3OH				
12	$CO_2^* + * \rightleftharpoons CO^* + O^*$	0.52	0.17	81	78
13	$CO^* + H_2(g) + 2 * \rightleftharpoons CO^* + 2H^*$	0.20	0.57	19	55
14	$CO^* + 2H^* \rightleftharpoons HCO^* + H^*$	0.52	0.17	71	65
15	$HCO^* + H^* \rightleftharpoons CH_2O^* + *$	0.20	0.57	177	35
	rWGS pathway to CO				
16	$CO_{2}^{*} + 2H^{*} \rightleftharpoons COOH^{*} + H^{*} + *$	0.31	0.02	82	69
17	$COOH^* + * \rightleftharpoons CO^* + OH^*$	1.13	0.33	45	25
18	$CO^* + OH^* + H^* \rightleftharpoons CO^* + H_2O^*$	1.51	0.96	140	198
19	$CO^* \rightleftharpoons CO(g) + Ov$	1.0	1.0	51	-
20	$CO^* \rightleftharpoons CO(g) + *$	1.0	1.0	121	-

Activation energies (E_{act}) were directly obtained from DFT calculations. All DFT energies are corrected by the zero-point energy (ZPE). Numbers are the same as in Figure 3a.

Table S11. Kinetic parameters including ratio of partition functions of the TS and IS (Q_{TS}/Q_{IS}) and TS and FS (Q_{TS}/Q_{FS}), forward ($E_{act,f}$) and backward ($E_{act,f}$) activation energies for CO₂ hydrogenation to CH₃OH, CO and H₂O over Pd-In₂O₃ model.

	Elementary steps	Q_{TS}/Q_{IS}	Q_{TS}/Q_{FS}	E _{act,f} (kJ/mol)	E _{act,b} (kJ/mol)
	Oxygen vacancy formation pathway				
1	$H_2(g) + 2 * \rightleftharpoons 2H^*$	0.20	0.57	62	72
2	$H^* + OH^* \rightleftharpoons H_2 O^* + O^*$	1.70	0.39	47	127
3	$H_20^* \rightleftharpoons H_2O(g) + *$	1.0	1.0	12	-
	Formate pathway to CH ₃ OH				
4	$CO_2(g) + * \rightleftharpoons CO_2^*$	1.0	1.0	-	31
5	$CO_{2}^{*} + H_{2}(g) + 2 * \rightleftharpoons CO_{2}^{*} + 2H^{*}$	0.20	0.57	104	247
6	$CO_2^* + 2H^* \rightleftharpoons HCO_2^* + H^* + *$	5.55	0.59	40	12
7	$HCO_2^* + H^* \rightleftharpoons H_2CO_2^* + *$	0.17	1.44	220	53
8	$H_2CO_2^* + * \rightleftharpoons CH_2O^* + O^*$	1.05	0.28	62	8
9	$CH_2O^* + H_2(g) + 2 * \rightleftharpoons CH_2O^* + 2H^*$	0.20	0.57	73	94
10	$CH_2O^* + 2H^* \rightleftharpoons CH_3O^* + H^*$	0.47	0.54	62	40
11	$CH_3O^* + H^* \rightleftharpoons CH_3OH_{(g)}$	0.06	0.61	106	141
	CO hydrogenation pathway to CH_3OH				
12	$CO_2^* + * \rightleftharpoons CO^* + O^*$	0.52	0.17	65	91
13	$CO^* + H_2(g) + 2 * \rightleftharpoons CO^* + 2H^*$	0.20	0.57	41	74
14	$CO^* + 2H^* \rightleftharpoons HCO^* + H^*$	1.0	1.0	148	55
15	$HCO^* + H^* \rightleftharpoons CH_2O^* + *$	1.0	1.0	128	14
	rWGS pathway to CO				
16	$CO_2^* + 2H^* \rightleftharpoons COOH^* + H^* + *$	0.31	0.02	61	81
17	$COOH^* + * \rightleftharpoons CO^* + OH^*$	1.13	0.33	42	23
18	$CO^* + OH^* + H^* \rightleftharpoons CO^* + H_2O^*$	1.51	0.96	140	82
19	$CO^* \rightleftharpoons CO(g) + Ov$	1.0	1.0	25	-
20	$CO^* \rightleftharpoons CO(g) + *$	1.0	1.0	31	-

Activation energies (E_{act}) were directly obtained from DFT calculations. All DFT energies are corrected by the zero-point energy (ZPE). Numbers are the same as in Figure 3b.

Table S12. Kinetic parameters including ratio of partition functions of the TS and IS (Q_{TS}/Q_{IS}) and TS and FS (Q_{TS}/Q_{FS}), forward ($E_{act,f}$) and backward ($E_{act,f}$) activation energies for CO₂ hydrogenation to CH₃OH, CO and H₂O over Pt-In₂O₃ model.

	Elementary steps	Q _{TS} /Q _{IS}	Q _{TS} /Q _{FS}	E _{act,f} (kJ/mol)	E _{act,b} (kJ/mol)
	Oxygen vacancy formation pathway				
1	$H_2(g) + 2 * \rightleftharpoons 2H^*$	0.20	0.57	48	144
2	$H^* + OH^* \rightleftharpoons H_2 O^* + O^*$	1.70	0.39	68	48
3	$H_2 O^* \rightleftharpoons H_2 O(g) + *$	1.0	1.0	41	-
	Formate pathway to CH₃OH				
4	$CO_2(g) + * \rightleftharpoons CO_2^*$	1.0	1.0	-	31
5	$CO_{2}^{*} + H_{2}(g) + 2 * \rightleftharpoons CO_{2}^{*} + 2H^{*}$	0.20	0.57	48	142
6	$CO_2^* + 2H^* \rightleftharpoons HCO_2^* + H^* + *$	5.55	0.59	34	66
7	$HCO_2^* + H^* \rightleftharpoons H_2CO_2^* + *$	0.17	1.44	146	17
8	$H_2CO_2^* + * \rightleftharpoons CH_2O^* + O^*$	1.05	0.28	156	56
9	$CH_2O^* + H_2(g) + 2 * \rightleftharpoons CH_2O^* + 2H^*$	0.20	0.57	23	203
10	$CH_2O^* + 2H^* \rightleftharpoons CH_3O^* + H^*$	0.47	0.54	80	65
11	$CH_3O^* + H^* \rightleftharpoons CH_3OH_{(g)}$	0.06	0.61	118	105
	rWGS pathway to CO				
12	$CO_{2}^{*} + * \rightleftharpoons CO^{*} + O^{*}$	0.52	0.17	65	91
16	$CO_2^* + 2H^* \rightleftharpoons COOH^* + H^* + *$	0.31	0.02	147	92
17	$COOH^* + * \rightleftharpoons CO^* + OH^*$	1.13	0.33	65	32
18	$CO^* + OH^* + H^* \rightleftharpoons CO^* + H_2O^*$	1.51	0.96	133	149
19	$CO^* \rightleftharpoons CO(g) + Ov$	1.0	1.0	24	-
20	$CO^* \rightleftharpoons CO(g) + *$	1.0	1.0	158	-

Activation energies (E_{act}) were directly obtained from DFT calculations. All DFT energies are corrected by the zero-point energy (ZPE).Numbers are the same as in Figure 3c.

Table S13. Kinetic parameters including ratio of partition functions of the TS and IS (Q_{TS}/Q_{IS}) and TS and FS (Q_{TS}/Q_{FS}) , forward $(E_{act,f})$ and backward $(E_{act,f})$ activation energies for CO₂ hydrogenation to CH₃OH, CO and H₂O over Rh-In₂O₃ model.

	Elementary steps	Q _{TS} /Q _{IS}	Q _{TS} /Q _{FS}	E _{act,f} (kJ/mol)	E _{act,b} (kJ/mol)
	Oxygen vacancy formation pathway				
1	$H_2(g) + 2 * \rightleftharpoons 2H^*$	0.20	0.57	57	201
2	$H^* + OH^* \rightleftharpoons H_2 O^* + O^*$	1.70	0.39	76	7
3	$H_2 0^* \rightleftharpoons H_2 0(g) + *$	1.0	1.0	26	-
	Formate pathway to CH ₃ OH				
4	$CO_2(g) + * \rightleftharpoons CO_2^*$	1.0	1.0	-	87
5	$CO_2^* + H_2(g) + 2 * \rightleftharpoons CO_2^* + 2H^*$	0.20	0.57	51	85
6	$CO_2^* + 2H^* \rightleftharpoons HCO_2^* + H^* + *$	5.55	0.59	42	95
7	$HCO_2^* + H^* \rightleftharpoons H_2CO_2^* + *$	0.17	1.44	155	19
8	$H_2CO_2^* + * \rightleftharpoons CH_2O^* + O^*$	1.05	0.28	101	34
9	$CH_2O^* + H_2(g) + 2 * \rightleftharpoons CH_2O^* + 2H^*$	0.20	0.57	25	209
10	$CH_2O^* + 2H^* \rightleftharpoons CH_3O^* + H^*$	0.47	0.54	149	133
11	$CH_3O^* + H^* \rightleftharpoons CH_3OH_{(g)}$	0.06	0.61	135	119
	rWGS pathway to CO				
12	$CO_2^* + * \approx CO^* + O^*$	0.52	0.17	80	78
16	$CO_2^* + 2H^* \rightleftharpoons COOH^* + H^* + *$	0.31	0.02	59	138
17	$COOH^* + * \rightleftharpoons CO^* + OH^*$	1.13	0.33	25	45
18	$CO^* + OH^* + H^* \rightleftharpoons CO^* + H_2O^*$	1.51	0.96	186	68
19	$CO^* \rightleftharpoons CO(g) + Ov$	1.0	1.0	120	-
20	$CO^* \rightleftharpoons CO(g) + *$	1.0	1.0	215	-

Activation energies (E_{act}) were directly obtained from DFT calculations. All DFT energies are corrected by the zero-point energy (ZPE).Numbers are the same as in Figure 3d.

S9: Further Microkinetic simulations

Fig. S6: (a) CO_2 consumption rate (s⁻¹), (b) CH_3OH selectivity, (c) CH_3OH TOF (s⁻¹) and (d) CO TOF in s⁻¹ as a function of temperature on SA-In₂O₃ models (p = 50 bar, H_2/CO_2 ratio =5). The data for In₂O₃-bare are taken from reference [¹]

Fig. S7. Molar fluxes analysis for Pd-In₂O₃. (a) T = 200 °C and (b) T = 450 °C. The dominant pathway for each model is indicated by the colored pathways.

	Table S14. Binding energies of SA-O (SA = Ni, Po	, Pt and Rh) and In-O in kJ/mol taken from ref[²].
--	--	---

	E _b [kJ/mol]
Ni-O	391
Rh-O	377
In-O	360
Pt-O	347
Pd-O	234

Fig. S8. Sensitivity of the microkinetic simulations at different values of the barrier of the step of HCO_2 hdyrogenation to H_2CO_2 (step 7). From light to dark the activation energy energy decreases by steps of 10 kJ/mol. (a-b) Ni-In₂O₃, (c-d) Pd-In₂O₃, (e-f) Pt-In₂O₃ and (g-h) Rh-In₂O₃.

Fig. S9. Sensitivity of the microkinetic simulations at different values of the barrier of the step of H_2CO_2 hdyrogenation to CH_2O+O (step 8). From light to dark the activation energy energy decreases by steps of 10 kJ/mol. (a-b) Ni-In₂O₃, (c-d) Pd-In₂O₃, (e-f) Pt-In₂O₃ and (g-h) Rh-In₂O₃.

S10. Additional DFT Calculations

A fundamental assumption in this study was that each kinetic pathway exclusively employs a singular oxygen vacancy, in line with previous DFT calculations on In_2O_3 . Although exploration of the full kinetic pathway involving a secondary vacancy is out of scope of this manuscript, we calculated a few key elementary steps. We calculated the step of HCOO hydrogenation to H_2COO on Pd- In_2O_3 as this step has the highest activation energy in the formate pathway to methanol. The results are reported in Tables S15-16. The presence of a second oxygen vacancy results in a lower barrier of 148 kJ/mol as opposed to the barrier of 220 kJ/mol found on Pd- In_2O_3 with one oxygen vacancy. Indeed, the hydrogenation from a Pd-H intermediate (Table S16) results in a lower barrier than the protonation from a O-H moiety as in the case with one Ov. However, this activation energy remians significantly higher than the main rate-limiting step (i.e. CO_2 dissociation; $E_a = 65$ kJ/mol). We can thus infer that the redox pathway remains dominant.

Table S15. Activation and reaction energies (kJ/mol) for the steps of HCOO hydrogenation on Pd- In_2O_3 with two oxygen vacancies.

	Elementary step	E _R	Ea
11	$HCOO^* + H^* \rightleftharpoons H_2COO^* + *$	86	148

Table S16. Structures of IS, TS and FS for the elementary reaction steps in Table S15.

We also investigated the elementary steps of CO hydrogenatoion in the presence of an additional oxygen vacancy for Pt- and Rh- In_2O_3 . The activation and reaction energies and structures are reported in Table S17-18. In the presence of a secondoxygen vacancy, the elementary steps of CO hydrogenation become accessible on Pt- In_2O_3 . On Rh- In_2O_3 , we still cannot find the TS for these elementary steps because the HCO intermediate is unstable on this model. The tables below show that the two hydrogenation steps on

 $Pt-In_2O_3$ are associated with activation energies of 89 and 171 kJ/mol, respectively. The last step has an higher activation energy because it occurs via migration of an O-H to a Pt-H.

Table S17. Activation and reaction energies (kJ/mol) for the steps of CO hydrogenation on Pt-In₂O₃.

	Elementary step	E _R	E_{act}
14	$CO^* + 2H^* \rightleftharpoons HCO^* + H^*$	89	5
15	$HCO^* + H^* \rightleftharpoons CH_2O^* + *$	171	164

Table S18. Structures of IS, TS and FS for the elementary reaction steps in Table S17.

$CO^* + 2H^* \rightleftharpoons HCO^* + H^*$			$HCO^* + H^* \rightleftharpoons CH_2O^* + *$			

Supporting References

- 1 M. S. Frei, M. Capdevila-Cortada, R. García-Muelas, C. Mondelli, N. López, J. A. Stewart, D. Curulla Ferré and J. Pérez-Ramírez, *J. Catal.*, 2018, **361**, 313–321.
- 2 S. W. Benson, J. Chem. Educ., 1965, **42**, 502–515.