CdS/TiO₂ Nanostructures Synthesized via SILAR Method for Enhanced Photocatalytic Glucose Conversion and Simultaneous Hydrogen Production under UV and Simulated Solar Irradiations

Kamonchanok Roongraung,^{a,b} Alexey Cherevan,^c Dominik Eder,^c and Surawut Chuangchote ^{a,b,*}

^a Department of Tool and Materials Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi (KMUTT), 126 Prachauthit Rd., Bangmod, Thungkru, Bangkok 10140, Thailand.

^b Research Center for Advanced Materials for Energy and Environmental Technology (MEET), King Mongkut's University of Technology Thonburi (KMUTT), 126 Prachauthit Rd., Bangmod, Thungkru, Bangkok 10140, Thailand.

^c Institute of Materials Chemistry, Technische Universität Wien (TU Wien), Getreidemarkt 9, Vienna 1060, Austria

E-mail: surawut.chu@kmutt.ac.th

The thermogravimetric (TGA) measurement was carried out on a TGA Q5000 (TA Instruments) for indicating the weight loss as a function of temperature. The TGA curve was recorded under air at temperature ramp from 30 to 1000 °C with the heating ramp of 5 °C min⁻¹. Figure S1 show the TGA curve of anatase TiO₂, 20CdS/TiO₂, CdS nanoparticles. The weight losses below 200 °C were attributed to the loss of absorbed water on surface of nanocomposites. A temperature range of 200-300 °C, it shows no big loss difference with a decrease of weight of 6% so it was attributed to reduce organic compound. But comparing between 20CdS/TiO₂ and CdS, it can observe that the mass increase at temperature range of 300-700 °C corresponding to the increase in CdS mass. It is an indication of the formation of cadmium sulfate (CdSO₄) through the following reaction (equation 1). The weight loss between 750-1000 °C could be attributed to the decomposition of CdSO₄.

$$CdS(g) + 2O_2 \rightarrow CdSO_4 \tag{1}$$

According the TGA result, it could be confirmed that the suitable calcination condition (200°C) which determine in this work not effect to the formation of CdS.

Fig. S1 TGA curve of anatase TiO₂ NPs, 20 CdS/TiO₂ NPs, CdS NP

Fig. S2 SEM image of (a) $2CdS/TiO_2$ NPs, (b) $5CdS/TiO_2$ NPs, (c) $10CdS/TiO_2$ NPs, (d) $15CdS/TiO_2$ NPs, (e) $20CdS/TiO_2$ NPs at magnification of 80k (scale bar = 2 µm), and (f) DLS particle size distribution of samples.

Fig. S3 SEM image of (a) $2CdS/TiO_2$ NPs, (b) $3CdS/TiO_2$ NPs, (c) $5CdS/TiO_2$ NPs at magnification of 80k (scale bar = 2 μ m), and (d) DLS diameter size distribution of samples.

Fig. S4 EDX spectra of TiO₂ NPs, TiO₂ NTs, CdS/ TiO₂ NPs, CdS/TiO₂ NTs with different CdS cycle.

Photocatalyst	Band gap (eV)	
TiO ₂ NPs	3.15	
1CdS/TiO ₂ NPs	3.18	
2CdS/TiO ₂ NPs	3.15	
3CdS/TiO ₂ NPs	3.00	
5CdS/TiO ₂ NPs	2.36	
10CdS/TiO ₂ NPs	2.22	
15CdS/TiO ₂ NPs	2.10	
20CdS/TiO ₂ NPs	2.00	
TiO ₂ NTs	3.11	
1CdS/TiO ₂ NTs	3.19	
2CdS/TiO ₂ NTs	2.40	
3CdS/TiO ₂ NTs	2.38	
5CdS/TiO ₂ NTs	2.22	

Table S1. The energy band-gap of TiO_2 NPs, TiO_2 NTs, CdS/TiO_2 NPs, and CdS/TiO_2 NTs with different CdS cycles.

Fig. S5 HPLC chromatogram of products from photocatalytic glucose conversion.

Fig. S6 Stability and recycle of 1CdS/TiO₂ nanotubes for four consecutive cycles.

Fig. S7 The possible reaction routes for glucose conversion.