Fabrication of High-performance CeO₂-MnO_x/TiO₂/Ti Monolithic Catalysts for Low-temperature and Stable CO Oxidation

Junchao Wang,^{‡a,b} Xinyue Tang,^{‡d} Jing Li,^c Shizhi Dong,^e Xinglai Zhang,^b and

Baodan Liu*c

^a School of Materials Science and Engineering, University of Science and

Technology of China, No. 72 Wenhua Road, Shenyang 110016 China

^b Shenyang National Laboratory for Materials Science (SYNL), Institute of Metal

Research (IMR), Chinese Academy of Sciences (CAS), No. 72 Wenhua Road,

Shenyang 110016 China

^c Foshan Graduate School of Innovation, Northeastern University, No. 2, Zhihui

Road, Shunde District, Foshan, 528300, China

^d School of Materials Science and Engineering, Shenyang Ligong University, Shenyang 110159, China

^e School of Material Science and Engineering, Liaoning Technical University, No.

47, Zhonghua Road, Fuxin, 123000 China

Corresponding Author

baodanliu@hotmail.com;

Figure S1. SEM images of the CeO_2 -MnO_x/TiO₂/Ti catalysts prepared at different deposition time: (a) 3 h; (b) 6 h; (c) 9 h; (d) 12 h; (e) 18 h; (f) 24

h.

Figure S2. (a) SEM images of cross-section of CeMn/TiO₂(200) catalyst and corresponding EDS mapping results: (b-e) Ti, O, Ce and Mn, respectively; (f) elemental line scan profiles along the yellow line direction.

Figure S3. (a) SEM images of CeMn/TiO₂(200) catalysts on Ti mesh and corresponding EDS mapping results: (b) Ti; (c) O; (d) Mn; (e) Ce; (f)

EDS spectrum.

Figure S4. N_2 adsorption-desorption isotherms curves of CeO₂-MnO_x/TiO₂/Ti monolithic catalysts with different urea concentrations.

Figure S5. (a) Catalytic CO oxidation light-off curves of as-prepared $CeO_2-MnO_x/TiO_2/Ti$ catalysts obtained by different deposition time; (b) Relationship of T_{100} and the atomic ratio of Mn/Ce as a dependence with deposition time.

Table S1. Comparison of the activity for CO oxidation on different CeO₂

	2		
Catalyst	Reaction temperature	Reaction condition	Reference
CeO ₂ /TiO ₂ /Ti	$T_{50} = 350 \ ^{\circ}C$	$p(CO) = 0.998\%, p(O_2) = 20.04\%$, in He.	[1]
CeO ₂ micro- spheres	$T_{90} = 338 \ ^{\circ}C$	1 vol% CO, 4 vol% O ₂ , balanced He.	[2]
CeO ₂	$T_{98} = 370 \ ^{\circ}C$	1 vol.% CO, 20 vol.% O ₂ , 79 vol% Ar.	[3]
CeO ₂ NR _S	$T_{100} > 390 \ ^{\circ}C$	1 vol.% CO, 20 vol.% O ₂ , 79 vol% Ar.	[4]
Ce/TiO ₂	$T_{100} = 334 \ ^{\circ}C$	$p(CO) = 0.998\%, p(O_2) = 20.04\%$, in He.	This work

catalysts in literatures.

Table S2. Mass loss of a series of CeO_2 -MnO_x/TiO₂/Ti catalysts after

Catalyst	Initial mass	Final mass	Loss mass	Mass loss
	(mg)	(mg)	(mg)	ratio
CeMn/TiO ₂ (50)	411.8	405	6.8	1.65 wt%
CeMn/TiO ₂ (100)	434	427	7	1.61 wt%
CeMn/TiO ₂ (200)	383.4	377.1	6.3	1.64 wt%
CeMn/TiO ₂ (300)	453.3	416	37.3	8.23 wt%

ultrasonic treatment for 10 min (wt%).

Notes and references

- 1. X. Liu, K. Wang, Y. Zhou, et al., *In-situ* fabrication of Ce-rich CeO₂ nanocatalyst for efficient CO oxidation, J. Alloys Compd., 2019, **792**, 644-651.
- D. Jampaiah, V. K. Velisoju, D. Devaiah, et al., Flower-like Mn₃O₄/CeO₂ microspheres as an efficient catalyst for diesel soot and CO oxidation: Synergistic effects for enhanced catalytic performance, Appl. Surf. Sci., 2019, 473, 209-221.
- 3. X. Zhang, F. Hou, Y. Yang, et al., A facile synthesis for cauliflower like CeO₂ catalysts from Ce-BTC precursor and their catalytic performance for CO oxidation, Appl. Surf. Sci., 2017, **423**, 771-779.
- Y. Deng, P. Tian, S. Liu, et al., Enhanced catalytic performance of atomically dispersed Pd on Pr-doped CeO₂ nanorod in CO oxidation, J. Hazard. Mater., 2022, 426, 127793.