## In situ construction of S-scheme heterojunction conjugated polymer/g- $C_3N_4$ photocatalysts for enhanced H<sub>2</sub> production and organic pollutant degradation

Na Mao<sup>*a.b*</sup>

<sup>a</sup>College of Chemistry and Materials, Weinan Normal university, Weinan 714099, P. R.

China E-mail: maona166@126.com

<sup>b</sup>Shaanxi Key Laboratory for Advanced Energy Devices, Key Laboratory for Macromolecular Science of Shaanxi Province, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, P. R. China.



*Fig. S1*. Thermogravimetric analysis trace of g-C<sub>3</sub>N<sub>4</sub>, PPyPP, PPyPP/g-C<sub>3</sub>N<sub>4</sub>-0.2 composite under a nitrogen atmosphere with a heating rate of 10 °C/min.



Fig. S2. FT-IR spectra of g-C<sub>3</sub>N<sub>4</sub>, PPyPP, PPyPP/g-C<sub>3</sub>N<sub>4</sub> composites.



*Fig. S3.* XPS survey spectra of PPyPP/g-C<sub>3</sub>N<sub>4</sub>-0.2 composite.



*Fig. S4.* Plots of  $(Fhv)^2$  vs photon energy(hv) for the band gap energy for all samples.



*Fig. S5.* Power XRD spectra of PPyPP/g-C<sub>3</sub>N<sub>4</sub>-0.2 composite before and under light irradiation for 15 hours in a triethylamine/water mixture.



*Fig. S6.* Photoluminescence spectra ( $\lambda ex = 365 \text{ nm}$ ) of PPyPP/g-C<sub>3</sub>N<sub>4</sub>-0.2 composite before and under light irradiation for 15 hours in a triethylamine/water mixture.



*Fig. S7.* UV-vis DRS of PPyPP/g-C<sub>3</sub>N<sub>4</sub>-0.2 composite before and under light irradiation for 15 hours in a triethylamine/water mixture;