Electronic Supporting Information

Low-temperature deep oxidation of N, N-dimethylformamide (DMF) over CeCu binary oxides

Cedric Karel Fonzeu Monguen^{a,b}, Samuel Daniel^{a,b}, Zhen-Yu Tian^{a,b,*}

^a Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China ^b University of Chinese Academy of Sciences, Beijing 100049, China

Table of Contents

Section 1: Preparation method	1
Section 2: Catalytic test experimental setup	2
Section 3: Structural properties	4
Section 4: Ionic states configuration	7
Section 5: Redox properties	11
Section 6: Catalytic activity	12
References	13

Section 1: Preparation method

The powders were fabricated by Sol-gel method.

Figure S1. Sol-gel setup for the nanoparticles catalyst preparation ^{1, 2}.

Section 2: Catalytic test experimental setup

Figure S2. The catalytic test system connected to the FTIR equipment.

Section 3: Structural properties

Figure S3. EDS-HAADF images of CuCe samples; Ce₁₀₀(a), Ce₅₀Cu₅₀(b), Ce₃₀Cu₇₀(c),

Ce₁₀Cu₉₀(d), Cu₁₀₀.

Ce10Cu90 (a)

Ce30Cu70 (b)

Ce50Cu50 (c)

Figure S4. Fine-Element mapping images of CuCe samples; Ce₁₀Cu₉₀ (a), Ce₃₀Cu₇₀ (b), and

 $Ce_{50}Cu_{50}(c).$

Samples	hkl	FWHM (β) (°)	2θ (°)	Crystallite size D (nm)	D average (nm)	Micro- strain ^ɛ (%)	ε average (%)
Co	110	0.41	35.47	20.34	20.20	0.11	0.12
Ce ₁₀₀	111	0.42	38.69	20.05	20.20	0.13	0.12
C C	110	0.46	35.47	18.13	10.40	0.13	0.13
Ce ₅₀ Cu ₅₀	111	0.45	38.69	18.71	18.42	0.14	0112
	110	0.49	35.47	17.02	17.00	0.14	0.14
Ce ₃₀ Cu ₇₀	111	0.48	38.69	17.54	17.28	0.15	0.14
	110	0.59	35.47	14.14	14.07	0.16	0.16
Ce ₁₀ Cu ₉₀	111	0.54	38.69	15.59	14.87	0.16	0.10
C	110	0.63	35.47	13.24	12.50	0.17	0.18
Cu ₁₀₀	111	0.61	38.69	13.80	13.32	0.19	0.10

 Table S1 Crystallite size and micro-strain of thin-films samples.

Note: hkl refers to Miller indicies, θ refers to Bragg's angle, and FWHM refers to the full width at half maximum of the peak.

Samples	Surface area	Pore volume	Pore size
	(m²/g)	(cm ³ /g)	(nm)
Ce ₁₀₀ ³	3.775	0.009	25.703
Ce ₅₀ Cu ₅₀	4.962	0.027	28.660
Ce ₃₀ Cu ₇₀	5.319	0.031	39.382
Ce ₁₀ Cu ₉₀	6.146	0.034	41.689
Cu ₁₀₀	7.739	0.044	42.645

Table S2 CeCu materials specific surface area.

Section 4: Ionic states configuration

Samples	Туре	Ce	Cu	С	0	Ce/O	Cu/O	Cu/Ce
Ce ₁₀₀	XPS	5.77	0.00	29.11	65.12	0.09	0.00	0.00
	EDS	12.50	0.00	35.70	51.80	0.24	0.00	0.00
Ce ₅₀ Cu ₅₀	XPS	4.05	5.86	36.47	53.62	0.08	0.11	1.45
	EDS	3.40	17.30	39.40	39.90	0.08	0.43	5.09
Ce ₃₀ Cu ₇₀	XPS	3.34	6.87	39.66	50.13	0.07	0.14	2.06
	EDS	2.50	19.40	40.70	39.40	0.06	0.49	7.76
Ce ₁₀ Cu ₉₀	XPS	1.05	8.83	40.45	49.67	0.02	0.18	8.41
	EDS	0.20	22.80	46.00	30.50	0.01	0.75	114
Cu ₁₀₀	XPS	0.00	9.03	52.21	38.76	0.00	0.23	-
	EDS	0.00	23.90	49.90	26.20	0.00	0.91	-

Table S3 Comparison of the relative contents of CeCu binary oxides using EDS and XPS.

Catalysts	Parameters		Ce 3 <i>d</i> 5/	/2		Ce 3 <i>d</i> 3/	2
	Species	Ce ³⁺	Ce ⁴⁺	Ce ³⁺ /Ce ⁴⁺	Ce ³⁺	Ce ⁴⁺	Ce ³⁺ /Ce ⁴⁺
Ce ₁₀₀	BE (eV)	884.04	882.23	0.34	900.70	898.14	0.36
	RA (%)	25.36	74.64		26.46	73.54	
	Species	Ce^{3+}	Ce^{4+}	Ce ³⁺ /Ce ⁴⁺	Ce^{3+}	Ce^{4+}	Ce ³⁺ /Ce ⁴⁺
Ce ₅₀ Cu ₅₀	BE (eV)	884.33	882.16	0.39	900.61	898.06	0.40
	RA (%)	27.84	72.16		28.35	71.65	
	Species	Ce^{3+}	Ce^{4+}	Ce ³⁺ /Ce ⁴⁺	Ce^{3+}	Ce^{4+}	Ce ³⁺ /Ce ⁴⁺
Ce ₃₀ Cu ₇₀	BE (eV)	883.76	882.29	0.79	900.95	898.24	0.70
	RA (%)	44.24	55.76		41.30	58.70	
	Species	Ce^{3+}	Ce^{4+}	Ce ³⁺ /Ce ⁴⁺	Ce^{3+}	Ce^{4+}	Ce ³⁺ /Ce ⁴⁺
Ce ₁₀ Cu ₉₀	BE (eV)	883.79	882.30	1.13	900.92	898.26	0.93
	RA (%)	53.07	46.93		48.27	51.73	
Cu ₁₀₀	-	-	-	-	-	-	-

Table S4 Results of curve-fitting on the Ce 3d binding energies and relative atomic percentage for the five sets of catalysts.

Note: BE refers to binding energy, and RA refers to the relative area of the peak.

Catalysts	Parameters			(D 1s		
	Species	O ²⁻	CO3 ²⁻	OH-	H ₂ O	O _{Lat} /O _{Ads}	CO ₃ ²⁻ /OH ⁻
Ce ₁₀₀	BE (eV)	529.20	531.17	532.74	535.86	0.22	0.32
	RA (%)	17.88	16.27	50.60	15.20		
	Species	O ²⁻	CO ₃ ²⁻	OH-	H ₂ O	O _{Lat} /O _{Ads}	CO ₃ ²⁻ /OH ⁻
Ce ₅₀ Cu ₅₀	BE (eV)	529.43	531.13	532.32	535.13	0.32	1.90
	RA (%)	24.51	42.16	22.23	11.10		
	Species	O ²⁻	CO3 ²⁻	OH-	H ₂ O	O _{Lat} /O _{Ads}	CO ₃ ²⁻ /OH ⁻
Ce ₃₀ Cu ₇₀	BE (eV)	529.35	531.22	532.61	535.38	0.34	2.60
	RA (%)	25.92	45.72	17.56	10.80		
	Species	O ²⁻	CO3 ²⁻	OH-	H ₂ O	O _{Lat} /O _{Ads}	CO ₃ ²⁻ /OH ⁻
Ce ₁₀ Cu ₉₀	BE (eV)	529.58	531.17	533.01	535.51	0.38	3.24
	RA (%)	27.63	48.75	15.05	8.57		
	Species	O ²⁻	CO3 ²⁻	OH-	H ₂ O	O _{Lat} /O _{Ads}	CO ₃ ²⁻ /OH ⁻
Cu ₁₀₀	BE (eV)	529.57	531.36	532.65	535.37	0.43	3.40
	RA (%)	29.92	49.13	14.44	6.51		

Table S5 Results of curve-fittings on the O 1s binding energies and relative atomic percentage for the four sets of catalysts

Note: BE refers to the binding energy; O_{Lat} refers to the lattice oxygen; O_{Ads} refers to the adsorption oxygen; RA refers to the relative area of the peak.

Catalysts	Parameters	s Cu 2 <i>p</i> 3/2			Cu 2 <i>p</i> 1/2		
Ce ₁₀₀	-	-	-	-	-	-	-
	Species	Cu^{2+}	Cu^+	Cu^{2+}/Cu^{+}	Cu^{2+}	Cu^+	Cu^{2+}/Cu^{+}
Ce ₅₀ Cu ₅₀	BE (eV)	934.74	933.52	0.60	954.45	952.98	0.56
	RA (%)	37.42	62.58		35.98	64.02	
	Species	Cu^{2+}	Cu^+	Cu^{2+}/Cu^{+}	Cu^{2+}	Cu^+	Cu^{2+}/Cu^{+}
Ce ₃₀ Cu ₇₀	BE (eV)	934.67	933.10	0.66	954.43	952.84	0.66
	RA (%)	39.69	60.31		39.72	60.28	
	Species	Cu^{2+}	Cu^+	Cu^{2+}/Cu^{+}	Cu^{2+}	Cu^+	Cu^{2+}/Cu^{+}
Ce ₁₀ Cu ₉₀	BE (eV)	935.03	933.26	0.80	954.86	953.09	0.80
	RA (%)	44.42	55.58		43.80	56.20	
	Species	Cu^{2+}	Cu^+	Cu^{2+}/Cu^{+}	Cu^{2+}	Cu^+	Cu ²⁺ /Cu ⁺
Cu ₁₀₀	BE (eV)	935.08	933.57	0.92	954.88	953.03	0.87
	RA (%)	47.94	52.06		46.50	53.50	

Table S6 Results of curve-fitting on the Cu 2p binding energies and relative atomic percentage for the five sets of catalysts.

Note: BE refers to binding energy, and RA refers to the relative area of the peak.

Section 5: Redox properties

	H ₂ consumptions (mmol/g)				
Cat.		Peak 1	Peak 2	Peak 3	
Ce ₁₀₀	Temperature (°C)	575.60	589.94	641.77	
	Area	4.03	1.31	6.52	
Ce ₅₀ Cu ₅₀	Temperature (°C)	339.58	392.46	520.55	
	Area	1.74	1.68	0.38	
Ce ₃₀ Cu ₇₀	Temperature (°C)	305.51	0.00	0.00	
	Area	6.65	0.00	0.00	
Ce ₁₀ Cu ₉₀	Temperature (°C)	255.39	0.00	0.00	
	Area	5.59	0.00	0.00	
Cu ₁₀₀	Temperature (°C)	249.28	0.00	0.00	
	Area	5.02	0.00	0.00	

Table S7 Results of the H₂-TPR analysis for the CeCu catalysts.

Table S8 Results of the O₂-TPO analysis for the CeCu catalysts.

	O ₂ consumptions (mmol/g)						
Cat.		Peak 1	Peak 2	Peak 3			
Ce ₁₀₀	Temperature (°C)	693.42	0.00	0.00			
	Area	7.09	0.00	0.00			
Ce ₅₀ Cu ₅₀	Temperature (°C)	180.24	536.26	694.14			
	Area	0.09	0.64	0.71			
Ce ₃₀ Cu ₇₀	Temperature (°C)	130.66	438.95	693.84			
	Area	0.02	0.23	0.68			
Ce ₁₀ Cu ₉₀	Temperature (°C)	85.69	399.26	599.29			
	Area	0.03	0.18	0.50			
Cu ₁₀₀	Temperature (°C)	84.09	187.15	573.07			
	Area	0.02	0.06	0.67			

Section 6: Catalytic activity

Figure S5. Reproducibility of DMF oxidation over CeCu binary oxides catalysts.

 Table S9 Results of DMF conversion and selectivity of products obtained for CeCu binary oxides catalysts.

Catalysts	DMF	CO ₂	NO ₂
Ce ₁₀₀	81.48	66.29	33.71
$Ce_{50}Cu_{50}$	91.99	62.48	37.52
Ce ₃₀ Cu ₇₀	95.61	56.81	43.19
$Ce_{10}Cu_{90}$	97.55	56.33	43.67
Cu ₁₀₀	98.72	56.27	43.73

References

- C. K. Fonzeu Monguen, A. El Kasmi, M. F. Arshad, P. M. Kouotou, S. Daniel and Z.-Y. Tian, *Ind. Eng. Chem. Res.*, 2022, 61, 4546-4560.
- S. Daniel, C. K. F. Monguen, A. El Kasmi, M. F. Arshad and Z.-Y. Tian, *Catal. Lett.*, 2022, DOI: 10.1007/s10562-022-03977-6.
- 3. C. K. Fonzeu Monguen, E.-J. Ding, S. Daniel, J.-Y. Jia, X.-H. Gui and Z.-Y. Tian, *Catalysts*, 2023, 16, 865.