## Effect of Cu and Sb active sites on acid-base properties and reactivity of the hydrated alumina for glycerol conversion by dehydrogenation and dehydration

reactions

Regina Claudia Rodrigues dos Santos <sup>1,\*</sup>, Moacir José da Silva Júnior <sup>1</sup>, Gabriel Lima Nunes <sup>1</sup>, Antoninho Valentini <sup>1,\*</sup>

<sup>1</sup>Department of Analytical Chemistry and Physical Chemistry, Federal University of Ceará, Campus of Pici, Fortaleza, CE, CEP:60440-554. Brazil.

\* Corresponding author. Tel.: +55 85 3366 9951. <u>reginaclaudiasantos@yahoo.com.br</u>

## **Supplementary Information**



**Fig. S1.** Optimized structures of (a) Bayerite  $\beta$ -Al(OH)<sub>3</sub>, (b) side view of the (2 × 1) supercell of the bayerite Al–OH (001) surface, (c) doped with Sb atom; (d) doped with Cu-Sb atoms and (e and f) Free pyridine and CO<sub>2</sub> molecules. Pink, red, white, grey, light brown, blue and yellow balls are Al, O, H, C, Cu, N and Sb atoms, respectively.



Fig. S2. FT-IR spectra of the prepared samples and the commercial antimony oxide.



**Fig. S3.** TGA profiles and DTG curves obtained for Al, Sb/Al and CuSbAl samples after calcination at 500°C and exposure to the water vapour at room temperature.

**Table S1.** Calculated atomic charges originating from a Bader analysis for the surface atoms on the periodic models considered in this study.

|                  | Atomic Bader charges (e) |       |       |      |      |           |  |
|------------------|--------------------------|-------|-------|------|------|-----------|--|
| Surfaces         | O(15)                    | O(38) | H(6)  | Sb   | Cu   | Structure |  |
| Al – OH(001)     | -1.39                    | -1.44 | 0.56  |      |      | Fig.S1(b) |  |
| Sb/A1-OH(001)    | -1.41                    | -     | -0.39 | 0.99 |      | Fig.S1(c) |  |
| Cu-Sb/Al-OH(001) | -1.46                    | -1.38 | -0.37 | 0.87 | 0.10 | Fig.S1(d) |  |

# Atom number correspondent position, see Figure. O(15) is the O atom bonded to the Sb atom. O(38) is the O atom bonded to the Cu atom. H(6) is the H atom bonded to the Sb atom.

**Table S2.** Atomic Bader charges for an isolated  $CO_2$  molecule, Sb and Cu atoms, in the most stable  $CO_2$  adsorption configurations on the different surfaces for comparison.

|                                     | Atomic Bader charges (e) |       |       |      |      |                  |           |
|-------------------------------------|--------------------------|-------|-------|------|------|------------------|-----------|
| Structures                          | C                        | O(a)  | O(b)  | Sb   | Cu   | Interaction site | Structure |
| $CO_2/Al - OH(001)$                 | 2.20                     | -1.09 | -1.10 | -    | -    | O(b)…H(41)       | Fig.9(a)  |
|                                     | 2.16                     | -1.10 | -1.09 |      |      | O(b)…H(41)       | Fig.9(d)  |
| $CO_2/Sb/Al - OH(001)$              | 2.17                     | -1.11 | -1.10 | 1.02 | -    | O(b)····H        | Fig.9(b)  |
|                                     | 2.20                     | -1.11 | -1.12 | 1.01 | -    | O(b)…H(97)       | Fig.9(e)  |
| CO <sub>2</sub> /Cu-Sb/A1 – OH(001) | 2.17                     | -1.10 | -1.09 | 0.87 | 0.12 | O(b) …Cu-Sb      | Fig.9(c)  |
|                                     | 1.72                     | -1.05 | -1.08 | 0.97 | 0.36 | C –Cu-Sb         | Fig.9(f)  |
| CO <sub>2</sub> molecule            | 2.14                     | -1.07 | -1.07 | -    | -    |                  | Fig.S1(f) |

**Table S3.** Bader charges of the atoms (N, C4 and C5) for a pyridine molecule, Sb and Cu atoms, in the most stable pyridine adsorption configurations on the different surfaces. It also presents the pyridine molecule interaction type on the surface.

|                       | Atomic Bader charges (e) |      |       |      |      |             |                |           |
|-----------------------|--------------------------|------|-------|------|------|-------------|----------------|-----------|
| Structures            | N                        | C(5) | C(4)  | Sb   | Cu   | Interaction | Interaction    | Structure |
|                       |                          |      |       |      |      | site        | type           |           |
| Py/A1-OH(001)         | -1.13                    | 0.47 | -0.05 | -    | -    | N …H(14)    | Hydrogen       | Fig.10(a) |
|                       | -1.20                    | 0.49 | -0.05 | -    | -    | N …H(14)    | bond           | Fig.10(d) |
| Py/Sb/Al – OH(001)    | -1.28                    | 0.30 | -0.06 | 1.58 | -    | N –Sb       | $\sigma$ -bond | Fig.10(b) |
|                       | -1.14                    | 0.47 | -0.07 | 1.04 | -    |             |                | Fig.10(e) |
| Py/Cu-Sb/Al – OH(001) | -1.20                    | 0.47 | -0.03 | 0.76 | 0.26 | N –Cu-Sb    | σ-bond         | Fig.10(c) |
|                       | -1.09                    | 0.40 | -0.13 | 0.75 | 0.31 | C(i) –Cu-Sb | $\pi$ -bond    | Fig.10(f) |
| Pyridine molecule     | -1.12                    | 0.46 | -0.03 |      |      |             |                | Fig.S1(e) |



**Fig. S4.** DFT optimized molecular geometries for glycerol, intermediates (1,3-enol, 3-hydroxypropanal, glyceraldehyde and 2,3-enol) and products (acetol and acrolein). The red, white and grey colours spheres represent O, H and C atoms, respectively.

| Molecule isolated  | E <sub>DFT</sub> (eV) | E <sub>DFT</sub> (kJ/mol) | $^{*}\Delta E_{DFT}(eV)$ | * $\Delta E_{DFT}$ (kJ/mol) |
|--------------------|-----------------------|---------------------------|--------------------------|-----------------------------|
| Glycerol           | -1877.66736           | -181223.9                 | 0.0000                   | 0.0                         |
| 1,3 -Enol          | -1415.95727           | -136661.8                 | 461.7101                 | 44562.2                     |
| 3- Hidroxypropanal | -1416.16174           | -136681.5                 | 461.5056                 | 44542.4                     |
| Glyceraldehyde     | -1845.30572           | -178100.5                 | 32.3616                  | 3123.4                      |
| 2,3-Enol           | -1415.90417           | -136656.6                 | 461.7632                 | 44567.3                     |
| Acetol             | -1416.65293           | -136728.9                 | 461.0144                 | 44495.0                     |
| Acrolein           | -954.288976           | -92103.6                  | 923.3784                 | 89120.3                     |

**Table S4.** The DFT ground states energies (in eV and kJ/mol) for the molecular geometries shown in Figure S4.

\* $\Delta E_{DFT} = E - E_{GLY}$  means the relative DFT energy (in eV and kJ/mol) concerning the glycerol molecule.