Supplementary material

Table S1: Textural properties of catalysts, based on N2 physisorption	2
Table S2: XPS data for Pt/C and PtSn ₂ C	3

Figure S1: N ₂ physisorption isotherms	2
Figure S2: NH ₃ temperature programmed desorption	3
Figure S3: Simplified diagram of reactor set-ups	4
Figure S4: ¹ H-NMR spectrum of partially dehydrogenated n-tetradecane	6
Figure S5: Gas phase FTIR spectra	8
Figure S6: Typical gas chromatogram of partially dehydrogenated tetradecane	9
Figure S7: Typical GC-MS chromatogram of partially dehydrogenated tetradecane	10
Figure S8: MS spectra of relevant compounds	11

Figure S1: N₂ physisorption isotherms for A) 5 wt% Pt/Al₂O₃; B) 5 wt% Pt/C; C) 5 wt% PtSn₂/C. \circ : adsorption; Δ : desorption

Table S1: Textural properties ofcatalysts, based on N2physisorption

Catalyst	Surface Area ^a	Pore volume ^b	Average pore
Catalyst	(m²/g)	(cm³/g)	diameter ^b (nm)
Pt/C	796	0.35	4.8
PtSn ₂ /C	581	0.45	7.3
Pt/Al ₂ O ₃	154	0.81	21.4
^a Based on BET method			

bused off BET method

^bBased on BJH method

Table S2: XPS data for Pt/C and PtSn₂C

Pt/C	Binding energy (eV)	FWHM (eV)	Concentration (at. %)
C 1s	284.5 ± 0.1	3.1 ± 0.2	91.8 ± 1.0
Na 1s	1071.5 ± 0.1	2.8 ± 0.1	0.6 ± 0.2
O 1s	532.7 ± 0.3	4.2 ± 0.3	6.4 ± 1.2
Pt 4f _{5/2} (Pt(0))	74.2 ± 0.0	1.1 ± 0.0	0.5 ± 0.0
Pt 4f _{7/2} (Pt(0))	70.9 ± 0.0	1.1 ± 0.0	0.7 ± 0.0
PtSn ₂ /C			
C 1s	284.6 ± 0.2	3.1 ± 0.1	83.6 ± 12.3
Cl 2p	199.7 ± 0.4	3.6 ± 1.0	0.1 ± 0.1
O 1s	532.4 ± 0.4	4.1 ± 0.1	6.7 ± 3.1
Pt 4f _{5/2} (Pt(0))	74.5 ± 0.0	1.2 ± 0.0	0.2 ± 0.0
Pt 4f _{7/2} (Pt(0))	71.2 ± 0.0	1.2 ± 0.0	0.2 ± 0.0
Sn 3d _{3/2} (SnO)	494.6 ± 0.0	1.5 ± 0.0	0.1 ± 0.0
Sn 3d _{5/2} (SnO)	486.1 ± 0.0	1.5 ± 0.0	0.2 ± 0.0
Sn 3d _{3/2} (SnO ₂)	495.8 ± 0.0	1.5 ± 0.0	0.4 ± 0.1
Sn 3d _{5/2} (SnO ₂)	487.4 ± 0.0	1.5 ± 0.0	0.5 ± 0.1

Figure S2: NH₃ temperature programmed desorption for Pt/Al₂O₃, Pt/C, PtSn₂/C between 373K and <mark>873K</mark>

Figure S3: Simplified diagram of reactor set-ups for batch and continuous ethylene addition. P: digital pressure sensor; T: thermocouple; MFC: mass flow controller (0.06-1 ml_n/min); BPR: back-pressure regulator (0-2 barg)

Figure S4: ¹H-NMR spectrum of partially dehydrogenated n-tetradecane (Bruker Avance 400 MHz, zg30 pulse program, CDCl₃, relative to TMS). Reaction conditions: 0.25mmol Pt in 10 ml n-tetradecane, 250°C, 22h, 1 bar ethylene at start **A)** Full spectrum with peak integration: olefin yield 2.2% internal + 0.07% terminal (GC yield 2.3%), aromatics yield 0.46% (GC yield 0.5%) **B)** Spectrum zoomed in to olefin region (4.6-6 ppm) **C)** Spectrum zoomed in to aromatic region (6.5-8 ppm)

Figure S5: Gas phase FTIR spectra, Gasmet DX4000 FTIR analyzer **A**) Gas phase sample (55% ethane/45% ethylene). Peak at 2300-2400 cm⁻¹ corresponds to CO_2 introduced during sample injection, not present in reactor. **B**) Reference (100% ethane). **C**) reference (100% ethylene)

Figure S6: Typical gas chromatogram of partially dehydrogenated tetradecane, diluted in heptane. DB-FFAP column. **A)** Full chromatogram. **B)** Chromatogram zoomed in to relevant region. 25.8 min: tetradecane; 26.7 min: tetradecenes; 36.5 min: C_{14^-} alkylaromatics; 30.2 min: n-pentadecane; 32.5 min: tetradecadienes (not quantified)

Figure S7: Typical GC-MS chromatogram of partially dehydrogenated tetradecane diluted in acetone, VF-WAXms column, 40°C for 5 minutes, then 10°C/min ramp to 230°C, hold at 230°C for 2.5 minutes. **A)** 50 ppm sample in acetone **B)** 5000 ppm sample in acetone, detector turned off during tetradecane elution. Zoomed in to relevant region.

Figure S8: MS spectra of relevant compounds. **A)** Tetradecane (19.8 min, Figure S3). **B)** Tetradecene (20.4 min, Figure S3), all peaks in the region 20.2-21.4 min show similar MS spectra, no distinction between isomers was possible. **C)** C_{14} alkylaromatic (25.5 min, Figure S3), other peaks in the region 24.5-26.5 min show spectra with similar ions in different distributions, all consistent with C_{14} aromatic compounds.