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Chemical and Reagents

Zinc nitrate hexahydrate, 2-methylimidazole, cobalt iron oxide nanoparticles, and 

methanol were purchased from Sigma-Aldrich. All reagents were of analytical grade and used 

as received without further purification. 

Characterization

The crystallinity of the as-prepared samples was measured using powder X-ray 

diffraction (XRD; PANalytical X’Pert PRO, USA) with a Cu Kα radiation source (λ = 1.5405 

Å). Fourier-transform infrared (FTIR; Perkin-Elmer, Bruker) spectroscopy in attenuated total 

reflectance mode was performed to determine the vibrational modes of the samples. The 

elemental composition was determined by X-ray photoelectron spectroscopy (XPS; K-Alpha, 

Thermo Scientific, USA) using Al-Kα radiation (1486.6 eV). The morphologies of the samples 

were investigated via scanning electron microscopy with a field emission gun (S4800, Hitachi, 

Japan) and high-resolution transmission electron microscopy (HR-TEM; Tecnai G2 F20 S-

TWIN, FEI, USA) with an emission field gun of 200 kV in Schottky mode. Energy-dispersive 

X-ray analysis of the samples was performed using an X-ray column attached to the TEM 

instrument. The surface areas of the electrocatalysts were determined using 3Flex 

(Micromeritics, Norcross, GA, USA).
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Fabrication of working electrodes

A slurry was obtained by mixing the synthesized electrocatalyst (80 %), carbon black (10 

%), and a poly (vinylidene fluoride) (PVDF-10 %) binder in NMP solvent. This slurry was 

coated onto a Ni foam current collector via drop casting. The coated current collector was dried 

for 10 h. The electrochemical cell with the electrode system consisted of a coated electrode as 

the working electrode, a Pt electrode as the counter electrode, and Hg/HgO as the reference 

electrode. The working electrode coated with the electrocatalyst was studied in alkaline (1.0 M 

KOH) and alcohol (1.0 M methanol) media.

Electrochemical Characterization

The electrocatalytic performance was analyzed using electrochemical techniques such 

as cyclic voltammetry (CV), linear sweep voltammetry (LSV), electrochemical impedance 

spectroscopy (EIS), and chronoamperometry (CA) in a three-electrode system using a KOH 

(alkaline medium) electrolyte with and without the addition of methanol. CV analysis was 

performed at different scan rates in the 20–120 mV s −1. The methanolelectro–oxidation 

reaction was performed in the potential range 0–0.7 V. The LSV was measured in 0.0–1.0 V 

vs Hg/HgO at 5 mV s–1. EIS analyses were performed in a frequency range between 100 mHz 

and 1.0 MHz. The stability of the prepared samples was studied by chronoamperometry for up 

to 6 h. 

The activity of the electrocatalysts was determined using the ECSA values. To 

determine the ECSA values of the electrocatalysts, CV measurements were performed in the 

nonFaradaic region of 0.03–0.015 V vs. the Hg/HgO electrode. The ECSA was calculated using 

the following equation [1].

                      ECSA=  ,                                 (s1)

𝐶ⅆ𝑙
𝐶𝑠

where  is the double-layer capacitance. Studies have shown that the double-layer charging 𝐶ⅆ𝑙

current of a given capacitor generally levels off when plotted against the scan rate. This line is 

linearly related to Cdl, and the slope of the plot is equivalent to Cdl. Further, Cs is the general 

specific capacitance (0.04 mF cm−2), as reported in previous studies [1, 2]
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Fig. S1 Survey scan spectra of ZIF-8 and ZCFO-1 electrocatalysts.

Fig. S2 (a-i), (b-ii) HR-TEM images, (a-ii), (b-ii) magnified TEM images along with d-spacing 

values, and (a-iii), (b-iii) corresponding line-profile images of the ZCFO-1 electrocatalyst.
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Fig. S3. Nyquist plots of the electrocatalysts ZIF-8, ZCFO-1, ZCFO-2, and ZCFO-3 (d) 

electrocatalysts in 1.0 M KOH.
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Fig. S4. Chronoamperometry curves of the ZIF-8, ZCFO-1, ZCFO-2, and ZCFO-3 (d) 

electrocatalysts in 1.0 M KOH along with 1.0 M of methanol
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Fig. S5. Surface area analysis results: N2 adsorption−desorption isotherm plots of (a) ZIF-8, 

(b) ZCFO-1, (c) ZCFO-2, and (d) ZCFO-3; Inset table represent the pore volume and pore size 

distribution results calculated from the BJH.
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Fig. S6. CV curves of electrochemical active surface area test (ECSA) of (a) ZIF-8, (b) 

ZCFO-1, (c) ZCFO-2, and (d) ZCFO-3.
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Fig. S7. Electrochemical double-layer capacity (Cdl) of electrocatalysts.
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Table. S1 Comparison of MOFs based electrocatalysts in MOR analysis

Electrocatalyst Electrolyte MOR activity

Current/current 

denisty

Ref

Ni- doped ZIF-8 0.1 M NaOH & 0.05 M MeOH 0.744 mA cm-2 3-43

Ni- doped ZIF-67 0.1 M NaOH & 0.05 M MeOH 2.5 mA cm-2 4-65

Ni- doped MIL-110 0.1 M NaOH & 0.1 M MeOH 14.4 mA cm-2 5-80

Ni-MOF 0.5 M NaOH & 4.0 M MeOH 90 mA cm-2 6-78

ZIF-8 thin film 0.5 M NaOH & 0.5 M MeOH 0.25 mA cm-2 7-63

MoS2@CoNi-ZIF 1.0 M KOH & 0.5 M MeOH 430.08 mAcm-2 8-114

Ni/Zn-MOFs 0.1 M NaOH & 4.76 mM MeOH 300 μA 9-119

Ni-BTC/ 4wt% rGO 1.0 M NaOH & 2.0 M MeOH 200.2 mAcm-2 10-77

ZIF-8 1.0 M KOH & 0.5 M MeOH 21.32 mA g-1

ZCFO-1 1.0 M KOH & 0.5 M MeOH 40.84 mA g-1

ZCFO-2 1.0 M KOH & 0.5 M MeOH 29.72 mA g-1

ZCFO-3 1.0 M KOH & 0.5 M MeOH 24.83 mA g-1

Present 

work

Table. S2 Comparison of ZIF-8 and CoFe2O4 based electrocatalysts in OER analysis

Electrocatalyst Electrolyte Overpotential

(10 mA cm-2)

Tafel slope

(mV dce-1)

Ref

CFO 1.0 M KOH 360 115

CFO-Sn1 1.0 M KOH 320 88

CFO-Sn2 1.0 M KOH 290 85

11

CoFe2O4/NF 1.0 M KOH 273 102 12

CoFe2O4/biomass 

carbon hybrid

1.0 M NaOH 300 86 13

CoFe2O4/SWNTs 1.0 M KOH 310 85 14

Au-CoFe2O4 1.0 M KOH 312 46.8

CoFe2O4 1.0 M KOH 374 35
15
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CoFe2O4 Nanoplates 1.0 M NaOH 410 61 16

CoFe2O4/rGO 1.0 M KOH 340 31 17

Reduced CoFe2O4 1.0 M KOH 320 94

CoFe2O4 NPs 1.0 M KOH 450 48
18

CoFe2O4-CoFex/C 1.0 M KOH 350 --- 19

ZIF-67@POM 1.0 M KOH 287 58 20

ZIF-67@NPC-2 (2:1) 0.1 M KOH 410 114 21

CoOx-ZIF 0.1 M NaOH 318 70.3 22

Co-ZIF-9 0.1 M KOH 510 93 23

ZIF-8@ZIF-67@POM 1.0 M KOH 490 88 24

SiW9Co3[h]@ZIF-67 0.1 M KOH 420 94 25

Fe/Ni2.4/Co0.4-MIL-53 1.0 M KOH 219 54 26

ZIF-67-350 1.0 M KOH 286 84 27

ZIF-L@Fe28 1.0 M KOH 312 78 28

ZIF-8 1.0 M KOH 380 189

ZCFO-1 1.0 M KOH 330 84

ZCFO-2 1.0 M KOH 350 88

ZCFO-3 1.0 M KOH 360 114

Present 

work
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