Supporting Information

Binaphthol derivatives as catalysts for visible light induced aryl halide derivatizations
Zhenghua Zhao, ${ }^{\text {a,b }}$ Mingjie Liu, ${ }^{\text {a,b }}$ Kai Zhou, ${ }^{\text {a,b }}$ Yajing Shen, ${ }^{\mathrm{b}}$ Longcheng Hong, ${ }^{\text {b }}$ Zongbi Bao, ${ }^{\text {a,b }}$
Qiwei Yang, ${ }^{\text {a,b }}$ Qilong Ren ${ }^{\text {a,b }}$ and Zhiguo Zhang*a,b
${ }^{\text {a }}$ Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P. R. China
${ }^{\text {b }}$ Institute of Zhejiang University-Quzhou, Quzhou 324000, P. R. China
E-mail: zhiguo.zhang@zju.edu.cn

Table of Contents

S1 Materials and Instrumentation

S2 Synthesis

S3 Electrochemical and Photochemical Characterizations

S4 Theoretical Calculations

S5 Photocatalytic Reactions

S6 EPR Measurements

S7 Cartesian Coordinates of the Optimized Structure

S8 NMR Spectra

S1 Materials and Instrumentation

All the reagents are commercially available, and used without further purification. Powder X-ray diffraction (PXRD) was carried out with a PANalytical X'Pert3 Powder-17005730 Xray Powder Diffractometer equipped with two Cu anodes $\left(\lambda_{1}=1.540598 \AA, \lambda_{2}=1.544426 \AA\right.$, ratio $\mathrm{K}-\alpha 2 / \mathrm{K}-\alpha 1$ $=0.5$) at 40 kV and 40 mA . Thermogravimetric analysis (TGA) was performed using a TA Discovery SDT 650 heated from room temperature to $600^{\circ} \mathrm{C}$ in air atmosphere at the heating rate of $5^{\circ} \mathrm{C} \cdot \mathrm{min}^{-1}$. Scanning electron microscopy (SEM) images were obtained using a Hitachi SU-8010 or ZEISS Sigma 300 microscope. UV-vis spectra were obtained on a Shimadzu UV-2600i spectrophotometer. Nuclear magnetic resonance (NMR) data were collected on Bruker Avance III 400 or Bruker Avance III 500 spectrometer. HRMS was recorded on an Agilent G6545 Q-TOF. Electrochemical characterizations were carried out with a CH Instruments CHI660E workstation. The photocatalytic reactions were performed in a PerfectLight PCX50C photoreactor with 5 W white light LED. Gas chromatographic (GC) analyses were performed using Shimadzu 2010 gas chromatographic equipped with an HP-5MS capillary column ($30 \mathrm{~m} \times 0.25 \mathrm{~mm} \times 0.25 \mu \mathrm{~m}$) and a flame ionization detector (GC-FID). Electron paramagnetic resonance (EPR) measurements were carried out on a Bruker model A300 spectrometer. Fluorescence spectra and luminescence decays were recorded on an Edinburgh Instruments FLS1000 spectrophotometer.

S2 Synthesis

The synthesis of the ligands L-OH and L-OMe, and MOFs Zr-MOF-OH and Zr-MOF-OMe was followed with our recently published work. ${ }^{1}$

Synthetic Routes of Ligands

Scheme S1. Synthetic routes of L-OH and L-OMe.

Synthesis of MOFs

Synthesis of Zr-MOF-OH: A mixture of L-OH ($50 \mathrm{mg}, 0.065 \mathrm{mmol}$) and $\mathrm{ZrCl}_{4}(46 \mathrm{mg}, 0.196$ mmol) was ultrasonic dissolved in anhydrous DMF $(10 \mathrm{~mL}) .2 .5 \mathrm{~mL}$ anhydrous formic acid was added and the mixture was heated in a 25 mL teflon-sealed autoclave at $120^{\circ} \mathrm{C}$ for 3 days. Light yellow crystals ($78 \mathrm{mg}, 41 \%$) were collected, and washed with DMF. Because the removing of solvent molecules from MOF channels will distort the framework, $\mathbf{Z r}-\mathbf{M O F - O H}\left[\mathrm{Zr}_{6}\left(\mu_{3}-\right.\right.$ $\left.\left.\mathrm{OH})_{8}(\mathrm{OH})_{8}\right)\right](\mathbf{L}-\mathrm{OH})_{2}$ was dipped in DMF and was collected through suction filtration before use.

Synthesis of Zr-MOF-OMe: A mixture of L-OMe ($20 \mathrm{mg}, 0.025 \mathrm{mmol}$) and $\mathrm{ZrCl}_{4}(17.6 \mathrm{mg}$, 0.076 mmol) was ultrasonic dissolved in dry DMF (4 mL). 2 mL anhydrous formic acid was added and the mixture was heated in a 25 mL teflon-sealed autoclave at $120{ }^{\circ} \mathrm{C}$ for 3 days. Colorless crystals ($32 \mathrm{mg}, 43 \%$) were collected, and washed with DMF. The storage of Zr-MOF-OMe $\left.\left[\mathrm{Zr}_{6}\left(\mu_{3}-\mathrm{OH}\right)_{8}(\mathrm{OH})_{8}\right)\right](\mathbf{L - O M e})_{2}$ was same as $\mathbf{Z r - M O F - O H}$.

Figure S1. Powder XRD patterns of Zr-MOF-OH and Zr-MOF-OMe

Figure S2. TG curve of Zr-MOF-OH. The weight loss of 52.7% in the $30-180^{\circ} \mathrm{C}$ range corresponds to the removal of solvents, and the weight loss of 27.0% in the range of $350-600{ }^{\circ} \mathrm{C}$ corresponds to the decomposition of $\left.\left[\mathrm{Zr}_{6}\left(\mu_{3}-\mathrm{OH}\right)_{8}(\mathrm{OH})_{8}\right)\right](\mathbf{L}-\mathbf{O H})_{2}$ to ZrO_{2}, which has an expected weight loss of 32.9\%.

Figure S3. TG curve of $\mathbf{Z r}$-MOF-OMe. The weight loss of 46.5% in the $30-180{ }^{\circ} \mathrm{C}$ range corresponds to the removal of solvents, and the weight loss of 32.6% in the range of $350-600{ }^{\circ} \mathrm{C}$ corresponds to the decomposition of $\left.\left[\mathrm{Zr}_{6}\left(\mu_{3}-\mathrm{OH}\right)_{8}(\mathrm{OH})_{8}\right)\right](\mathbf{L}-\mathbf{O M e})_{2}$ to ZrO_{2}, which has an expected weight loss of 34.3%.

Figure S4. SEM images of Zr-MOF-OH (a, b) and Zr-MOF-OMe (c, d).

Figure S5. UV-vis diffuse reflectance spectrum of Zr-MOF-OH

S3 Electrochemical and Photochemical Characterizations

Cyclic Voltammetry Analysis

Cyclic voltammetric experiments were conducted with a computer-controlled Shanghai Chen Hua CHI660E containing glassy carbon electrode serving as the working electrode, saturated calomel reference electrode, Pt plate auxiliary electrode. All solutions used for the cyclic voltammetric experiments were deoxygenated by purging with high purity argon gas at room temperature. The supporting electrolyte, tetrabutylammonium hexafluorophosphate (n - $\mathrm{Bu}_{4} \mathrm{NPF}_{6}$), was purchased from commercial suppliers TCI.

Figure S6. Cyclic voltammograms of $\mathbf{M e}_{\mathbf{4}} \mathbf{L}-\mathbf{O H}$ in $\mathrm{MeCN} / \mathrm{MeOH}=1: 1(1.0 \mathrm{mM})$ containing 0.1 M $n-\mathrm{Bu}_{4} \mathrm{NPF}_{6}$. Scan rate: $0.1 \mathrm{~V} / \mathrm{s} . E^{o x}=+1.00 \mathrm{~V}$.

Figure S7. Cyclic voltammograms of $\mathbf{M e}_{4} \mathbf{L}-\mathbf{O}^{-}$in $\mathrm{MeCN} / \mathrm{MeOH}=1: 1(1.0 \mathrm{mM})$ containing 0.1 M $n-\mathrm{Bu}_{4} \mathrm{NPF}_{6}$. Scan rate: $0.1 \mathrm{~V} / \mathrm{s}$. $E^{o x}=+0.26 \mathrm{~V}$.

Figure S8. Cyclic voltammograms of 4'-bromoacetophenone in $\mathrm{MeCN} / \mathrm{MeOH}=1: 1(1.0 \mathrm{mM})$ containing $0.1 \mathrm{M} n-\mathrm{Bu}_{4} \mathrm{NPF}_{6}$. Scan rate: $0.1 \mathrm{~V} / \mathrm{s}$. $E_{\text {red }}=-1.60 \mathrm{~V}$.

Figure S9. Cyclic voltammograms of 4-bromobenzophenone in $\mathrm{MeCN} / \mathrm{MeOH}=1: 1(1.0 \mathrm{mM})$ containing $0.1 \mathrm{M} n-\mathrm{Bu}_{4} \mathrm{NPF}_{6}$. Scan rate: $0.1 \mathrm{~V} / \mathrm{s} . E_{\text {red }}=-1.61 \mathrm{~V}$.

Figure S10. Cyclic voltammograms of methyl 4-bromobenzoate in $\mathrm{MeCN} / \mathrm{MeOH}=1: 1(1.0 \mathrm{mM})$ containing $0.1 \mathrm{M} n-\mathrm{Bu}_{4} \mathrm{NPF}_{6}$. Scan rate: $0.1 \mathrm{~V} / \mathrm{s}$. $E_{\text {red }}=-2.08 \mathrm{~V}$.

Figure S11. Cyclic voltammograms of methyl 6-bromo-2-naphthoate in $\mathrm{MeCN} / \mathrm{MeOH}=1: 1(1.0$ mM) containing $0.1 \mathrm{M} n-\mathrm{Bu}_{4} \mathrm{NPF}_{6}$. Scan rate: $0.1 \mathrm{~V} / \mathrm{s} . E_{\text {red }}=-1.69 \mathrm{~V}$.

Figure S12. Cyclic voltammograms of 4'-chloroacetophenone in $\mathrm{MeCN} / \mathrm{MeOH}=1: 1(1.0 \mathrm{mM})$ containing $0.1 \mathrm{M} n-\mathrm{Bu}_{4} \mathrm{NPF}_{6}$. Scan rate: $0.1 \mathrm{~V} / \mathrm{s}$. $E_{\text {red }}=-1.68 \mathrm{~V}$.

Figure S13. Cyclic voltammograms of 4-chlorobenzonitrile in $\mathrm{MeCN} / \mathrm{MeOH}=1: 1(1.0 \mathrm{mM})$ containing $0.1 \mathrm{M} n-\mathrm{Bu}_{4} \mathrm{NPF}_{6}$. Scan rate: $0.1 \mathrm{~V} / \mathrm{s}$. $E_{\text {red }}=-2.03 \mathrm{~V}$.

The excited state reduction potential of $\mathbf{M e}_{4} \mathbf{L}-\mathbf{O H}$ and $\mathbf{M e}_{4} \mathbf{L}-\mathbf{O}^{-}$was determined for $E^{*}\left(\mathbf{P C} / \mathbf{P C}{ }^{*}\right)$ according to the equations: $E^{*}\left(\mathbf{P C} / \mathbf{P C}^{*}\right)=\mathrm{E}_{\mathrm{ox}}-\mathrm{E}^{0,0}, \mathrm{E}^{0,0}$ was calculated through $\lambda_{\text {onset,em }}$ and $\lambda_{\text {max,em }}$, $\mathrm{E}^{0,0}=h c / \lambda=1240 \mathrm{~nm} / \lambda$.

```
\(\mathrm{E}^{*}\left(\mathbf{M e}_{\mathbf{4}} \mathbf{L}-\mathbf{O} / \mathbf{M e}_{\mathbf{4}} \mathbf{L}-\mathbf{O H}{ }^{*}\right)=-2.34 \sim-1.85 \mathrm{~V}\) vs SCE
\(\mathrm{E}^{*}\left(\mathbf{M e}_{\mathbf{4}} \mathbf{L}-\mathbf{O} / \mathbf{M e}_{\mathbf{4}} \mathbf{L}-\mathbf{O}^{-*}\right)=-2.76 \sim-1.86 \mathrm{~V}\) vs SCE.
```


S4 Theoretical Calculations

Theoretical calculations were performed using the Gaussian 09 software package. ${ }^{2}$ The PBE0/6$31 \mathrm{G}(\mathrm{d})$ level of theory was used for the calculations. The ground-state geometries were optimized by the density functional theory (DFT) method using the supposed structure as the initial structure. Based on the optimized ground state structure, the vertical transitions were calculated by TD-DFT method. To ensure that the optimized geometry was at a minimum, all geometry optimizations were followed by a frequency calculation and only positive frequencies were obtained. The molecular orbitals were visualized using GaussView 5.0 software.

S5 Photocatalytic Reactions

The photocatalytic reactions were performed in a PerfectLight PCX50C photoreactor with 5 W white LEDs and the system was maintained at $25^{\circ} \mathrm{C}$ by the circulating refrigeration equipment.

Figure S14. Emission spectrum of white light LED used in our experiments.

Table S1. Condition optimized experiments of the biaryl cross-coupling between 4'bromoacetophenone and N -methylpyrrole. ${ }^{\text {a }}$

entry	photocatalyst	alkali	solvent	complexing agent	yield/\% ${ }^{\text {b }}$
1	Me4L-OH		MeCN		$11^{\text {c }}$
2	Zr-MOF-OH		MeCN		$13{ }^{\text {c }}$
3	$\mathrm{Me}_{4} \mathrm{~L}-\mathrm{OH}$		MeOH		$10^{\text {c }}$
4	Me ${ }_{4} \mathrm{~L}-\mathrm{OH}$		DMSO		$8{ }^{\text {c }}$
5	$\mathrm{Me}_{4} \mathrm{~L}-\mathrm{OH}$	$\mathrm{Cs}_{2} \mathrm{CO}_{3} 1.2 \mathrm{eq}$	MeCN		46
6	$\mathrm{Me}_{4} \mathrm{~L}-\mathrm{OH}$	$\mathrm{Cs}_{2} \mathrm{CO}_{3} 1.2 \mathrm{eq}$	$\mathrm{MeCN} / \mathrm{MeOH}$		62
7	$\mathrm{Me}_{4} \mathrm{~L}-\mathrm{OH}$	$\mathrm{K}_{2} \mathrm{CO}_{3} 1.2 \mathrm{eq}$	$\mathrm{MeCN} / \mathrm{MeOH}$		29
8	$\mathrm{Me}_{4} \mathrm{~L}-\mathrm{OH}$	$\mathrm{Na}_{2} \mathrm{CO}_{3} 1.2 \mathrm{eq}$	$\mathrm{MeCN} / \mathrm{MeOH}$		24
9	$\mathrm{Me}_{4} \mathrm{~L}-\mathrm{OH}$	$\mathrm{Li}_{2} \mathrm{CO}_{3} 1.2 \mathrm{eq}$	$\mathrm{MeCN} / \mathrm{MeOH}$		17
10	$\mathrm{Me}_{4} \mathrm{~L}-\mathrm{OH}$	$\mathrm{Et}_{3} \mathrm{~N} 1.2 \mathrm{eq}$	$\mathrm{MeCN} / \mathrm{MeOH}$		21
11	$\mathrm{Me}_{4} \mathrm{~L}-\mathrm{OH}$	DIPEA 1.2 eq	$\mathrm{MeCN} / \mathrm{MeOH}$		37
12	$\mathrm{Me}_{4} \mathrm{~L}-\mathrm{OH}$	$\mathrm{Cs}_{2} \mathrm{CO}_{3} 1.2 \mathrm{eq}$	MeCN	18-crown-6 ${ }^{\text {f }}$	63
13	Me4L-OH	$\mathrm{Cs}_{2} \mathrm{CO}_{3} 1.2 \mathrm{eq}$	$\mathrm{MeCN} / \mathrm{MeOH}$	18-crown-6 ${ }^{\text {f }}$	72
14	$\mathrm{Me}_{4} \mathrm{~L}-\mathrm{OH}$	$\mathrm{K}_{2} \mathrm{CO}_{3} 1.2 \mathrm{eq}$	$\mathrm{MeCN} / \mathrm{MeOH}$	18-crown-6 ${ }^{\text {f }}$	64
15	$\mathrm{Me}_{4} \mathrm{~L}-\mathrm{OH}$	$\mathrm{Li}_{2} \mathrm{CO}_{3} 1.2 \mathrm{eq}$	$\mathrm{MeCN} / \mathrm{MeOH}$	12-crown-4 ${ }^{\text {f }}$	52
16	$\mathrm{Me}_{4} \mathrm{~L}-\mathrm{OH}$	$\mathrm{Cs}_{2} \mathrm{CO}_{3} 1.2 \mathrm{eq}$	$\mathrm{MeCN} / \mathrm{MeOH}$	benzo-18-crown-6 ${ }^{\text {f }}$	55
17	$\mathrm{Me}_{4} \mathrm{~L}-\mathrm{OH}$	$\mathrm{Cs}_{2} \mathrm{CO}_{3} 1.2 \mathrm{eq}$	$\mathrm{MeCN} / \mathrm{MeOH}$	triethylene glycol dimethyl ether	81
18	$\mathrm{Me}_{4} \mathrm{~L}-\mathrm{OH}$	$\mathrm{Cs}_{2} \mathrm{CO}_{3} 1.2 \mathrm{eq}$	$\mathrm{MeCN} / \mathrm{MeOH}$	tetraethylene glycol	78

				dimethyl ether	
19	$\mathrm{Me}_{4} \mathrm{~L}-\mathrm{OH}$	$\mathrm{Cs}_{2} \mathrm{CO}_{3} 1.2 \mathrm{eq}$	MeCN	triethylene glycol dimethyl ether	66
20	$\mathrm{Me}_{4} \mathrm{~L}-\mathrm{OH}$	$\mathrm{Cs}_{2} \mathrm{CO}_{3} 1.2 \mathrm{eq}$	MeOH	triethylene glycol dimethyl ether	19
21	$\mathrm{Me}_{4} \mathrm{~L}-\mathrm{OH}$	$\mathrm{Cs}_{2} \mathrm{CO}_{3} 1.2 \mathrm{eq}$	EtOH	triethylene glycol dimethyl ether	48
22	$\mathrm{Me}_{4} \mathrm{~L}-\mathrm{OH}$	$\mathrm{Cs}_{2} \mathrm{CO}_{3} 1.2 \mathrm{eq}$	DMF	triethylene glycol dimethyl ether	51
23	$\mathrm{Me}_{4} \mathrm{~L}-\mathrm{OH}$	$\mathrm{Cs}_{2} \mathrm{CO}_{3} 1.2 \mathrm{eq}$	THF	triethylene glycol dimethyl ether	26
24	$\mathrm{Me}_{4} \mathrm{~L}-\mathrm{OH}$	$\mathrm{Cs}_{2} \mathrm{CO}_{3} 1.2 \mathrm{eq}$	acetone	triethylene glycol dimethyl ether	54
25	$\mathrm{Me}_{4} \mathrm{~L}-\mathrm{OH}$	$\mathrm{Cs}_{2} \mathrm{CO}_{3} 0.8 \mathrm{eq}$	$\mathrm{MeCN} / \mathrm{MeOH}$	triethylene glycol dimethyl ether	52
26	$\mathrm{Me}_{4} \mathrm{~L}-\mathrm{OH}$	$\mathrm{Cs}_{2} \mathrm{CO}_{3} 1.0 \mathrm{eq}$	$\mathrm{MeCN} / \mathrm{MeOH}$	triethylene glycol dimethyl ether	64
27	$\mathrm{Me}_{4} \mathrm{~L}-\mathrm{OH}$	$\mathrm{Cs}_{2} \mathrm{CO}_{3} 1.4 \mathrm{eq}$	$\mathrm{MeCN} / \mathrm{MeOH}$	triethylene glycol dimethyl ether	81
28	$\mathrm{Me}_{4} \mathrm{~L}-\mathrm{OH}$	$\mathrm{Cs}_{2} \mathrm{CO}_{3} 1.2 \mathrm{eq}$	$\mathrm{MeCN} / \mathrm{MeOH}$	triethylene glycol dimethyl ether	$63{ }^{\text {d }}$
29	$\mathrm{Me}_{4} \mathrm{~L}-\mathrm{OH}$	$\mathrm{Cs}_{2} \mathrm{CO}_{3} 1.2 \mathrm{eq}$	$\mathrm{MeCN} / \mathrm{MeOH}$	triethylene glycol dimethyl ether	$81{ }^{\text {e }}$
30	Zr-MOF-OH	$\mathrm{Cs}_{2} \mathrm{CO}_{3} 1.4 \mathrm{eq}$	$\mathrm{MeCN} / \mathrm{MeOH}$	triethylene glycol dimethyl ether	82
31	Zr-MOF-OH	$\mathrm{Cs}_{2} \mathrm{CO}_{3} 1.0 \mathrm{eq}$	$\mathrm{MeCN} / \mathrm{MeOH}$	triethylene glycol dimethyl ether	71
32	Zr-MOF-OH	$\mathrm{Cs}_{2} \mathrm{CO}_{3} 0.8 \mathrm{eq}$	$\mathrm{MeCN} / \mathrm{MeOH}$	triethylene glycol dimethyl ether	65
33	Zr-MOF-OH	$\mathrm{Cs}_{2} \mathrm{CO}_{3} 0.6$ eq	$\mathrm{MeCN} / \mathrm{MeOH}$	triethylene glycol dimethyl ether	62
34	Zr-MOF-OH	$\mathrm{Cs}_{2} \mathrm{CO}_{3} 0.4 \mathrm{eq}$	$\mathrm{MeCN} / \mathrm{MeOH}$	triethylene glycol dimethyl ether	59
35	Zr-MOF-OH	$\mathrm{Cs}_{2} \mathrm{CO}_{3} 0.2 \mathrm{eq}$	$\mathrm{MeCN} / \mathrm{MeOH}$	triethylene glycol dimethyl ether	53
$36^{\text {g }}$	Zr-MOF-OH	$\mathrm{Cs}_{2} \mathrm{CO}_{3} 1.2 \mathrm{eq}$	$\mathrm{MeCN} / \mathrm{MeOH}$	triethylene glycol dimethyl ether	0
$37^{\text {h }}$	Zr-MOF-OH	$\mathrm{Cs}_{2} \mathrm{CO}_{3} 1.2 \mathrm{eq}$	$\mathrm{MeCN} / \mathrm{MeOH}$	triethylene glycol dimethyl ether	0
$38^{\text {i }}$	Zr-MOF-OH	$\mathrm{Cs}_{2} \mathrm{CO}_{3} 1.2 \mathrm{eq}$	$\mathrm{MeCN} / \mathrm{MeOH}$	triethylene glycol	18

${ }^{\text {a }}$ Conditions: $\mathbf{1}(0.1 \mathrm{mmol}), 2(2 \mathrm{mmol}), \mathbf{M e}_{4} \mathbf{L}-\mathbf{O H}(2 \mathrm{mg}) / \mathbf{Z r}-\mathbf{M O F}-\mathbf{O H}(4 \mathrm{mg})$, solvent (1 mL), white LED (5 W), alkali/complexing agent=1:4. Ar atmosphere, room temperature, 16 h . ${ }^{\text {b }}$ Determined by ${ }^{1} \mathrm{H}$ NMR (1,3,5-trimethoxybenzene as internal standard). ${ }^{\mathrm{c}} 40 \mathrm{~h} .{ }^{\mathrm{d}} \mathbf{2}$ (1 mmol). ${ }^{\mathrm{e}} \mathbf{2}$ (4 mmol). ${ }^{\mathrm{f}}$ alkali/complexing agent $=1: 2 .{ }^{\mathrm{g}}$ dark. ${ }^{\mathrm{h}}$ air atmosphere. ${ }^{\mathrm{i}} 0.1 \mathrm{mmol}$ hydroquinone was added.

Figure S15. Recycling performance of Zr-MOF-OH toward the biaryl cross-coupling between 4'bromoacetophenone and N-methylpyrrole. Conditions: 4'-bromoacetophenone (0.1 mmol), N methylpyrrole (2 mmol), Zr-MOF-OH (4 mg), $\mathrm{MeCN} / \mathrm{MeOH}\left(0.5 \mathrm{~mL} / 0.5 \mathrm{~mL}\right.$), $\mathrm{Cs}_{2} \mathrm{CO}_{3}(0.1 \mathrm{eq})$, triethylene glycol dimethyl ether (0.4 eq), white LED (5 W), Ar atmosphere, room temperature, 16 h. Yields were determined by ${ }^{1} \mathrm{H}$ NMR (1,3,5-trimethoxybenzene as internal standard). Zr-MOF$\mathbf{O H}$ was separated from the reaction system through centrifugation and reused directly in next runs.

Figure S16. SEM images of Zr-MOF-OH before (a, b) and after (c, d) 3 cycles toward the photocatalytic biaryl cross-coupling between 4'-bromoacetophenone and N-methylpyrrole.

Figure S17. Powder XRD patterns of Zr-MOF-OH before and after 3 cycles toward the photocatalytic biaryl cross-coupling between 4'-bromoacetophenone and N-methylpyrrole.

Table S2. Condition optimized experiments for the hydrodehalogenation of 4'bromoacetophenone. ${ }^{\text {a }}$

 1	$\xrightarrow[\text { photocatalyst, } \mathrm{Cs}_{2} \mathrm{CO}_{3} \text {, DIPEA, } \mathrm{MeCN} / \mathrm{MeOH}]{\text { triethylene glycol dimethyl ether, r.t. white } \mathrm{LED}}$		
entry	photocatalyst	$\mathrm{H}_{2} \mathrm{O}$	yield (\%) ${ }^{\text {b }}$
1	$\mathrm{Me}_{4} \mathrm{~L}-\mathrm{OH}$		57
2	$\mathrm{Me}_{4} \mathrm{~L}-\mathrm{OH}$	5 eq	83
3	$\mathrm{Me}_{4} \mathrm{~L}-\mathrm{OH}$	10 eq	98
4	$\mathrm{Me}_{4} \mathrm{~L}-\mathrm{OH}$	20 eq	86
5	$\mathrm{Me}_{4} \mathrm{~L}-\mathrm{OH}$	40 eq	71
6	$\mathrm{Me}_{4} \mathrm{~L}-\mathrm{OH}$	80 eq	60
7	Zr-MOF-OH	10 eq	98

${ }^{\text {a }}$ Conditions: 4 '-bromoacetophenone (0.1 mmol), $\mathbf{M e}_{4} \mathrm{~L}-\mathbf{O H}(2 \mathrm{mg}) / \mathbf{Z r}-\mathbf{M O F}-\mathbf{O H}(4 \mathrm{mg})$, $\mathrm{MeCN} / \mathrm{MeOH}(0.5 \mathrm{~mL} / 0.5 \mathrm{~mL}), \mathrm{Cs}_{2} \mathrm{CO}_{3}(1.2 \mathrm{eq})$, DIPEA (5.0 eq), triethylene glycol dimethyl ether (4.8 eq), white LED (5 W), Ar atmosphere, room temperature, $10 \mathrm{~h} .{ }^{\mathrm{b}}$ Determined by GC (anisole as internal standard).

Scheme S2. Proposed mechanism for photocatalytic hydrodehalogenation catalyzed by $\mathbf{M e}_{4} \mathbf{L}$ OH.

Table S3. Condition optimized experiments for the borylation of 4'-bromoacetophenone. ${ }^{\text {a }}$

${ }^{\text {a }}$ Conditions: 4'-bromoacetophenone (0.1 mmol), $\mathbf{M e}_{4} \mathbf{L}-\mathbf{O H}(2 \mathrm{mg}) / \mathbf{Z r}-\mathbf{M O F}-\mathbf{O H}(4 \mathrm{mg})$, $\mathrm{MeCN} / \mathrm{MeOH}(0.5 \mathrm{~mL} / 0.5 \mathrm{~mL}), \mathrm{Cs}_{2} \mathrm{CO}_{3}(1.2 \mathrm{eq})$, triethylene glycol dimethyl ether (4.8 eq), white LED (5 W), Ar atmosphere, room temperature, 16 h . ${ }^{\text {b }}$ Determined by ${ }^{1} \mathrm{H}$ NMR (1,3,5trimethoxybenzene as internal standard).

Scheme S3. Proposed mechanism for photocatalytic borylation catalyzed by $\mathbf{M e}_{4} \mathbf{L}-\mathbf{O H}$.

Table S4. Condition optimized experiments for the thioetherification of 4'-bromoacetophenone. ${ }^{\text {a }}$

${ }^{\text {a }}$ Conditions: 4'-bromoacetophenone (0.1 mmol), $\mathbf{M e}_{4} \mathrm{~L}-\mathbf{O H}(2 \mathrm{mg}) / \mathbf{Z r}-\mathbf{M O F}-\mathbf{O H}(4 \mathrm{mg})$, $\mathrm{MeCN} / \mathrm{MeOH}(0.5 \mathrm{~mL} / 0.5 \mathrm{~mL}), \mathrm{Cs}_{2} \mathrm{CO}_{3}(1.2 \mathrm{eq})$, triethylene glycol dimethyl ether (4.8 eq), white LED (5 W), Ar atmosphere, room temperature, $16 \mathrm{~h} .{ }^{\text {b }}$ Determined by GC (anisole as internal standard).

Scheme S5. Proposed mechanism for photocatalytic thioetherification catalyzed by $\mathbf{M e}_{4} \mathbf{L}-\mathbf{O H}$.

Table S5. Comparison with the literature report for the small organic molecule photocatalyzed biaryl cross-coupling between aryl halides and N-methylpyrrole.

entry	photocatalyst	catalyst content	base	base content	$\operatorname{light}(\mathrm{nm})$	time (h)	yield (\%)	ref.
1	PDI	$5 \mathrm{~mol} \%$	$\mathrm{Et}_{3} \mathrm{~N}$	8 eq	455	12-24	52-74	3
2	PTH	$5 \mathrm{~mol} \%$	NBu_{3}	5 eq	380	1.5-72	23-100	$4^{\text {a }}$
3	Aq-OH	$10 \mathrm{~mol} \%$	DIPEA	1-2 eq	455	16-120	31-56	5
4	4CzIPN	$5 \mathrm{~mol} \%$	TMG	2 eq	blue	16	33-77	6
5	PTH1	0.2-12 mol\%	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	3 eq	400	24-72	50-99	$7{ }^{\text {b }}$
6	PC3	$10 \mathrm{~mol} \%$	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	2 eq	400-500	12-36	38-91	$8^{\text {c }}$
7	5CzBN	$5 \mathrm{~mol} \%$	$\mathrm{Et}_{3} \mathrm{~N}$	1.6 eq	420	18-48	51-75	9
8	4-DPAIPN	$5 \mathrm{~mol} \%$	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	3 eq	405	20	51-92	$10^{\text {b }}$
9	HARCP	$10 \mathrm{~mol} \%$	DIPEA	8 eq	CFL	40	61-100	$11^{\text {a }}$
10	PC1	10-20 mol\%	$\mathrm{HCO}_{2} \mathrm{Na}$	2 eq	400	6-72	39-94	$12^{\text {d }}$
11	3CzEPAIPN	$5 \mathrm{~mol} \%$	$\mathrm{K}_{3} \mathrm{PO}_{4}$	2 eq	456	24	30-95	$13{ }^{\text {b }}$
12	PO1	$10 \mathrm{~mol} \%$	NaOt - Bu	2.1 eq	427	22	36-90	14
13	Py4	$2 \mathrm{~mol} \%$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	2 eq	455	20	60-90	15
14	$\mathrm{Me}_{4} \mathrm{~L}-\mathrm{OH}$	2.4 mol\%	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	1.2 eq	white	16	47-87	this work

${ }^{\text {a }}$ photocatalytic hydrodehalogenation reaction; ${ }^{b}$ photocatalytic borylation reaction; ${ }^{\text {c }}$ photocatalytic intermolecular oxyarylation of olefins with aryl halides and TEMPOH; d photocatalytic deuterodehalogenation reaction;

Procedures and data of photocatalytic products

General Procedures for biaryl cross-coupling reaction: aryl halides (0.1 mmol), radical acceptors (2 mmol), $\mathbf{M e}_{4} \mathrm{~L}-\mathbf{O H}(2 \mathrm{mg}), \mathrm{MeCN} / \mathrm{MeOH}(0.5 \mathrm{~mL} / 0.5 \mathrm{~mL}), \mathrm{Cs}_{2} \mathrm{CO}_{3}(39.1 \mathrm{mg})$, and triethylene glycol dimethyl ether $(85.6 \mathrm{mg})$ were added in a 10 mL Schlenck tube, the reaction was stirred at room temperature for 16 h in Ar atmosphere under the irradiation of 5 W white light LEDs in a paralleled reactor. After the reaction finished, 1,3,5-trimethoxybenzene was added as internal standard, then $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ was added and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The product was isolated through column chromatography.

3 synthesized from 4'-bromoacetophenone (1): According to the general procedure, $\mathbf{1}(0.1 \mathrm{mmol}, 19.9 \mathrm{mg})$ and $\mathbf{2}(2 \mathrm{mmol}, 162.3 \mathrm{mg})$ was converted to corresponding product $(16.1 \mathrm{mg}, 81 \%)$, which was purified through column chromatography ($5 / 1$ petroleum ether/ethyl acetate, $R_{\mathrm{f}}=0.30$) as a white solid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.98(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.49(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.76(\mathrm{dd}, J=2.7$, $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.35(\mathrm{dd}, J=3.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{dd}, J=3.7,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 2.61(\mathrm{~s}, 2 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.57,137.94,134.95,133.42,128.61,127.96,125.36,110.25$, 108.39, 35.46, 26.59. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{NO}^{+}$200.1070; Found 200.1071.

3 synthesized from 4'-chloroacetophenone: According to the general procedure, 4'chloroacetophenone ($0.1 \mathrm{mmol}, 15.5 \mathrm{mg}$) and $2(2 \mathrm{mmol}, 162.3 \mathrm{mg})$ was converted to corresponding product ($15.4 \mathrm{mg}, 77 \%$).

3 synthesized from 4'-iodoacetophenone: According to the general procedure, 4^{\prime} '-iodoacetophenone $(0.1 \mathrm{mmol}, 24.6 \mathrm{mg})$ and $2(2 \mathrm{mmol}, 162.3 \mathrm{mg})$ was converted to corresponding product (11.2 mg , 56\%).

4: According to the general procedure, 4-bromobenzophenone (0.1 mmol , $26.1 \mathrm{mg})$ and $2(2 \mathrm{mmol}, 162.3 \mathrm{mg})$ was converted to corresponding product ($20.5 \mathrm{mg}, 78 \%$), which was purified through column chromatography ($10 / 1$ petroleum ether/ethyl acetate, $R_{\mathrm{f}}=0.35$) as a yellow oil; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.82-7.72(\mathrm{~m}, 4 \mathrm{H}), 7.56-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.48-7.40(\mathrm{~m}, 4 \mathrm{H})$, $6.72-6.69(\mathrm{~m}, 1 \mathrm{H}), 6.30(\mathrm{dd}, J=3.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.20-6.14(\mathrm{~m}, 1 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.25,137.79,137.43,135.29,133.50,132.34,130.47,129.98,128.32$, $127.78,125.26,110.19,108.37,35.48$. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{NO}^{+}$262.1226; Found 262.1227.

5: According to the general procedure, methyl 4-bromobenzoate (0.1 mmol , $21.5 \mathrm{mg})$ and $2(2 \mathrm{mmol}, 162.3 \mathrm{mg})$ was converted to corresponding product $(12.2 \mathrm{mg}, 57 \%)$, which was purified through column chromatography ($5 / 1$ petroleum ether/ethyl acetate, $R_{\mathrm{f}}=0.65$) as a white solid; ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.07-7.93(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.36(\mathrm{~m}, 2 \mathrm{H}), 6.69(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.27(\mathrm{dd}, J=3.6$, $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.15(\mathrm{dd}, J=3.7,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

6: According to the general procedure, methyl 2-bromobenzoate $(0.1 \mathrm{mmol}, 21.5$ mg) and $2(2 \mathrm{mmol}, 162.3 \mathrm{mg})$ was converted to corresponding product $(13.4 \mathrm{mg}$, 62%), which was purified through column chromatography ($5 / 1$ petroleum ether/ethyl acetate, $\left.R_{\mathrm{f}}=0.70\right)$ as a colorless oil; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.83$ (dd, $J=7.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{td}, J=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{td}, J=7.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{dd}, J=$ $7.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{t}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.12(\mathrm{dd}, J=3.5,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.00(\mathrm{dd}, J=3.5,1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.33(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.75,133.90,132.67,132.40$, 131.36, 129.82, 127.77, 122.26, 108.41, 107.48, 52.26, 34.19. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{NO}_{2}{ }^{+}$216.1019; Found 216.1019.

7: According to the general procedure, methyl 3-bromobenzoate (0.1 mmol , $21.5 \mathrm{mg})$ and $2(2 \mathrm{mmol}, 162.3 \mathrm{mg})$ was converted to corresponding product ($17.3 \mathrm{mg}, 81 \%$), which was purified through column chromatography ($5 / 1$ petroleum ether/ethyl acetate, $\left.R_{\mathrm{f}}=0.70\right)$ as a colorless oil; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.02(\mathrm{dt}$, $J=1.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{dt}, J=7.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{ddd}, J=7.7,1.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{td}, J$ $=7.8,0.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.73-6.61(\mathrm{~m}, 1 \mathrm{H}), 6.21(\mathrm{dd}, J=3.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.14(\mathrm{dd}, J=3.6,2.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.02,133.64,133.47,132.87$, $130.35,129.50,128.52,127.74,124.23,109.27,107.98,52.23,35.15$. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{NO}_{2}{ }^{+}$216.1019; Found 216.1019 .

8: According to the general procedure, methyl 6-bromo-2-naphthoate ($0.1 \mathrm{mmol}, 26.5 \mathrm{mg}$) and $2(2 \mathrm{mmol}, 162.3 \mathrm{mg})$ was converted to corresponding product $(19.0 \mathrm{mg}, 72 \%)$, which was purified through column chromatography ($10 / 1$ petroleum ether/ethyl acetate, $R_{\mathrm{f}}=0.45$) as a white solid; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.53(\mathrm{~s}, 1 \mathrm{H}), 7.99(\mathrm{dd}, J=8.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{~d}$, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{dd}, J=8.5,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~s}, 1 \mathrm{H}), 6.31(\mathrm{dd}, J$ $=3.5,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.25-6.12(\mathrm{~m}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 167.26, 135.59, 134.03, 133.16, 131.11, 130.84, 129.41, 128.13, 127.74, 127.18, 126.25, 125.76, 124.75, 109.90, 108.26, 52.27, 35.43. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{NO}_{2}{ }^{+}$266.1176; Found 266.1176.

9 synthesized from 4'-bromobenzonitrile: According to the general procedure, 4-bromobenzonitrile ($0.1 \mathrm{mmol}, 18.2 \mathrm{mg}$) and $2(2 \mathrm{mmol}, 162.3 \mathrm{mg})$ was converted to corresponding product ($14.5 \mathrm{mg}, 79 \%$), which was purified through column chromatography ($5 / 1$ petroleum ether/ethyl acetate, $R_{\mathrm{f}}=0.55$) as a light yellow solid; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.67(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 6.80-6.77(\mathrm{~m}, 1 \mathrm{H}), 6.35(\mathrm{dd}, J=3.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{dd}, J=3.7,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 137.72,132.64,132.28,128.30,125.86,119.06,110.77,109.71$, 108.61, 35.48. HRMS (ESI) [M+H] ${ }^{+}$Calcd for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~N}_{2}{ }^{+}$183.0917; Found 183.0917.

9 synthesized from 4-chlorobenzonitrile: According to the general procedure, 4-chlorobenzonitrile
$(0.1 \mathrm{mmol}, 13.8 \mathrm{mg})$ and $2(2 \mathrm{mmol}, 162.3 \mathrm{mg})$ was converted to corresponding product $(13.7 \mathrm{mg}$, 75\%).

10: According to the general procedure, 2-bromobenzonitrile ($0.1 \mathrm{mmol}, 18.2 \mathrm{mg}$) and $2(2 \mathrm{mmol}, 162.3 \mathrm{mg})$ was converted to corresponding product ($10.0 \mathrm{mg}, 55 \%$), which was purified through column chromatography ($5 / 1$ petroleum ether/ethyl acetate, $R_{\mathrm{f}}=0.50$) as a light yellow solid; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.74(\mathrm{dd}, J$ $=7.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{td}, J=7.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-7.37(\mathrm{~m}, 2 \mathrm{H}), 6.79(\mathrm{dd}, J=2.7,1.7 \mathrm{~Hz}$, $1 \mathrm{H}), 6.41(\mathrm{dd}, J=3.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.25(\mathrm{dd}, J=3.7,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 136.94,133.53,132.34,130.88,129.94,127.40,124.82,118.62,112.88,111.47$, 108.33, 34.83. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~N}_{2}{ }^{+}$183.0917; Found 183.0917.

11: According to the general procedure, 3-bromobenzonitrile ($0.1 \mathrm{mmol}, 18.2$ mg) and $2(2 \mathrm{mmol}, 162.3 \mathrm{mg})$ was converted to corresponding product (15.3 $\mathrm{mg}, 84 \%$), which was purified through column chromatography ($5 / 1$ petroleum ether/ethyl acetate, $R_{\mathrm{f}}=0.50$) as a light yellow oil; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.69-7.66(\mathrm{~m}, 1 \mathrm{H}), 7.63(\mathrm{dt}, J=7.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{dt}, J=7.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{td}, J=7.7$, $0.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{dd}, J=2.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.28(\mathrm{dd}, J=3.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{dd}, J=3.6,2.7 \mathrm{~Hz}$, $1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 134.59,132.55,132.09,131.58,129.97,129.31$, 125.06, 118.80, 112.69, 110.05, 108.35, 35.21. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~N}_{2}{ }^{+}$ 183.0917; Found 183.0917.

12: According to the general procedure, 4-bromopyridine ($0.1 \mathrm{mmol}, 15.8 \mathrm{mg}$) and 2 ($2 \mathrm{mmol}, 162.3 \mathrm{mg}$) was converted to corresponding product ($11.9 \mathrm{mg}, 75 \%$), which was purified through column chromatography ($2 / 1$ petroleum ether/ethyl acetate, $R_{\mathrm{f}}=0.20$) as a light yellow solid; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.60(\mathrm{~s}$, $2 \mathrm{H}), 7.34(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.86-6.77(\mathrm{~m}, 1 \mathrm{H}), 6.44(\mathrm{dd}, J=3.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.31-6.18(\mathrm{~m}$, $1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.64,140.70,131.51,126.39,122.08,111.14$, 108.66, 35.67. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{~N}_{2}{ }^{+}$159.0917; Found 159.0917.

13 synthesized from 3-bromopyridine: According to the general procedure, 3bromopyridine ($0.1 \mathrm{mmol}, 15.8 \mathrm{mg}$) and $2(2 \mathrm{mmol}, 162.3 \mathrm{mg})$ was converted to corresponding product ($12.4 \mathrm{mg}, 78 \%$), which was purified through column chromatography ($1 / 1$ petroleum ether/ethyl acetate, $R_{\mathrm{f}}=0.45$) as a colorless oil; ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.70(\mathrm{~s}, 1 \mathrm{H}), 8.60-8.47(\mathrm{~m}, 1 \mathrm{H}), 7.71(\mathrm{dt}, J=7.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.33$ $(\mathrm{dd}, J=7.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.83-6.69(\mathrm{~m}, 1 \mathrm{H}), 6.30(\mathrm{dd}, J=3.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.26-6.14(\mathrm{~m}, 1 \mathrm{H})$, $3.68(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 149.26,147.71,135.53,130.86,129.37,124.76,123.30$, 109.83, 108.27, 35.12. HRMS (ESI) [M+H] ${ }^{+}$Calcd for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{~N}_{2}{ }^{+}$159.0917; Found 159.0916.

13 synthesized from 3-iodopyridine: According to the general procedure, 3-iodopyridine (0.1 mmol , $20.5 \mathrm{mg})$ and $2(2 \mathrm{mmol}, 162.3 \mathrm{mg})$ was converted to corresponding product $(12.6 \mathrm{mg}, 79 \%)$.

14: According to the general procedure, methyl 5-bromopyridine-2carboxylate $(0.1 \mathrm{mmol}, 21.6 \mathrm{mg})$ and $2(2 \mathrm{mmol}, 162.3 \mathrm{mg})$ was converted
to corresponding product $(14.0 \mathrm{mg}, 65 \%)$, which was purified through column chromatography ($1 / 1$ petroleum ether/ethyl acetate, $\left.R_{\mathrm{f}}=0.35\right)$ as a white solid; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.81(\mathrm{~d}, J$ $=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.16(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{dd}, J=8.1,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.97-6.78(\mathrm{~m}, 1 \mathrm{H}), 6.42$ $(\mathrm{dd}, J=3.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.31-6.20(\mathrm{~m}, 1 \mathrm{H}), 4.02(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 165.64,148.64,145.17,135.33,132.42,129.89,126.31,124.96,111.34,108.86,52.89$, 35.48. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+}$217.0972; Found 217.0972.

15: According to the general procedure, methyl 4-bromopyridine-2carboxylate $(0.1 \mathrm{mmol}, 21.6 \mathrm{mg})$ and $2(2 \mathrm{mmol}, 162.3 \mathrm{mg})$ was converted to corresponding product $(13.3 \mathrm{mg}, 61 \%)$, which was purified through column chromatography (ethyl acetate, $R_{\mathrm{f}}=0.60$) as a white solid; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.63(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.12-8.12(\mathrm{~m}, 1 \mathrm{H}), 7.42(\mathrm{dd}, J=5.1,1.8 \mathrm{~Hz}, 1 \mathrm{H})$, $6.82-6.71(\mathrm{~m}, 1 \mathrm{H}), 6.46(\mathrm{dd}, J=3.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.29-6.10(\mathrm{~m}, 1 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.92,149.95,148.14,141.75,127.12,124.54,123.10,118.83$, 111.97, 108.92, 52.99, 35.85. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+} 217.0972$; Found 217.0972.

16: According to the general procedure, 2-bromo-4-phenylpyridin (0.1 mmol, 23.4 mg) and $2(2 \mathrm{mmol}, 162.3 \mathrm{mg})$ was converted to corresponding product $(18.0 \mathrm{mg}, 77 \%)$, which was purified through column chromatography ($20 / 1$ petroleum ether/ethyl acetate, $R_{\mathrm{f}}=0.45$) as a colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.60(\mathrm{dd}, J=5.2,0.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J$ $=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.68-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.53-7.40(\mathrm{~m}, 3 \mathrm{H}), 7.29(\mathrm{dd}, J=5.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{t}, J=$ $2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{dd}, J=3.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{dd}, J=3.7,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 153.22,149.10,148.73,138.63,132.51,129.09,128.92,127.02,126.41$, 119.59, 118.53, 110.82, 107.72, 36.88. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{2}{ }^{+}$235.1230; Found 235.1231 .

17: According to the general procedure, 3-bromoquinoline ($0.1 \mathrm{mmol}, 20.8 \mathrm{mg}$) and $2(2 \mathrm{mmol}, 162.3 \mathrm{mg})$ was converted to corresponding product $(18.1 \mathrm{mg}$, 87%), which was purified through column chromatography ($5 / 1$ petroleum ether/ethyl acetate, $R_{\mathrm{f}}=0.40$) as a light yellow solid; ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 9.03(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.24-8.02(\mathrm{~m}, 2 \mathrm{H}), 7.84(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{ddd}, J=8.4$, $7.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.63-7.52(\mathrm{~m}, 1 \mathrm{H}), 6.96-6.80(\mathrm{~m}, 1 \mathrm{H}), 6.42(\mathrm{dd}, J=3.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.34-$ $6.22(\mathrm{~m}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.44,146.02,134.24,130.74,129.57$, 128.81, 127.86, 127.82, 127.31, 126.59, 125.16, 110.44, 108.53, 35.30. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~N}_{2}{ }^{+}$209.1073; Found 209.1074 .

18: According to the general procedure, 5-bromothiophene-2-carbonitrile (0.1 mmol, 18.8 mg) and $2(2 \mathrm{mmol}, 162.3 \mathrm{mg})$ was converted to corresponding product ($8.8 \mathrm{mg}, 47 \%$), which was purified through column chromatography (10/1 petroleum ether/ethyl acetate, $R_{\mathrm{f}}=0.25$) as a light yellow oil; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.49(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.79-6.64(\mathrm{~m}, 1 \mathrm{H}), 6.39$ $(\mathrm{dd}, J=3.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.11(\mathrm{dd}, J=3.7,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

19: According to the general procedure, 2-acetyl-5-bromothiophene (0.1 mmol , $20.5 \mathrm{mg})$ and $2(2 \mathrm{mmol}, 162.3 \mathrm{mg})$ was converted to corresponding product $(15.7 \mathrm{mg}, 77 \%)$, which was purified through column chromatography ($5 / 1$ petroleum ether/ethyl acetate, $\left.R_{\mathrm{f}}=0.40\right)$ as a yellow solid; ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.55(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.72-6.63(\mathrm{~m}, 1 \mathrm{H}), 6.43(\mathrm{dd}, J=3.7$, $1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.15-6.06(\mathrm{~m}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 190.49$, $143.88,141.76,133.17,126.80,126.13,124.32,111.59,108.62,35.90,26.51$. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$ Calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{NOS}^{+}$206.0634; Found 206.0635.

20: According to the general procedure, iodobenzene ($0.1 \mathrm{mmol}, 20.4 \mathrm{mg}$) and 2 (2 $\mathrm{mmol}, 162.3 \mathrm{mg}$) was converted to corresponding product ($10.2 \mathrm{mg}, 64 \%$), which was purified through column chromatography (10/1 petroleum ether/dichloromethane, $R_{\mathrm{f}}=0.40$) as a white solid; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.50-7.36(\mathrm{~m}, 4 \mathrm{H}), 7.31(\mathrm{ddd}, J=8.6,5.7,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.76-6.71(\mathrm{~m}, 1 \mathrm{H}), 6.24(\mathrm{dd}, J=3.5,1.8$ $\mathrm{Hz}, 1 \mathrm{H}), 6.23-6.21(\mathrm{~m}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 134.64,133.37,128.67$, 128.36, 126.74, 123.65, 108.65, 107.77, 35.07. HRMS (ESI) [M+H $]^{+}$Calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}^{+}$158.0964; Found 158.0964 .

22: According to the general procedure, $\mathbf{1}(0.1 \mathrm{mmol}, 19.9 \mathrm{mg})$ and N methyindole ($2 \mathrm{mmol}, 262.4 \mathrm{mg}$) was converted to corresponding product ($18.6 \mathrm{mg}, 75 \%$), which was purified through column chromatography ($5 / 1$ petroleum ether/ethyl acetate, $R_{\mathrm{f}}=0.50$) as a yellow solid; ${ }^{1} \mathrm{H}$ NMR $(500$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.07-7.94(\mathrm{~m}, 2 \mathrm{H}), 7.58(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.54$ (m, 2H), $7.33-7.29(\mathrm{~m}, 1 \mathrm{H}), 7.21(\mathrm{ddd}, J=8.3,7.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.12-7.07(\mathrm{~m}, 1 \mathrm{H}), 6.68-6.55$ $(\mathrm{m}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 2.59(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.63,140.24,138.92$, 137.47, $136.08,129.20,128.60,127.85,122.41,120.81,120.21,109.78,103.01,31.48,26.70$. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{NO}^{+}$250.1226; Found 250.1227.

23: According to the general procedure, $\mathbf{1}(0.1 \mathrm{mmol}, 19.9 \mathrm{mg})$ and $\mathbf{1 , 4 -}$ dimethoxybenzene ($2 \mathrm{mmol}, 276.4 \mathrm{mg}$) was converted to corresponding product ($15.4 \mathrm{mg}, 60 \%$), which was purified through column chromatography ($5 / 1$ petroleum ether/ethyl acetate, $R_{\mathrm{f}}=0.40$) as a white solid; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.00(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.63(\mathrm{~d}, J$ $=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.02-6.84(\mathrm{~m}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 2.63(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 197.91,153.81,150.76,143.40,135.63,130.37,129.67,128.13,116.60,113.93,112.75$, 56.30, 55.85, 26.67. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{O}_{3}{ }^{+}$257.1172; Found 257.1172.

24: According to the general procedure, $\mathbf{1}(0.1 \mathrm{mmol}, 19.9 \mathrm{mg})$ and $\mathbf{1 , 3 , 5}$ trimethoxybenzene ($2 \mathrm{mmol}, 336.4 \mathrm{mg}$) was converted to corresponding product ($18.5 \mathrm{mg}, 65 \%$), which was purified through column chromatography ($5 / 1$ petroleum ether/ethyl acetate, $R_{\mathrm{f}}=0.30$) as a white
solid; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.98(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.23(\mathrm{~s}, 2 \mathrm{H})$, $3.87(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{~s}, 6 \mathrm{H}), 2.62(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 198.05,161.11,158.23$, $139.77,135.11,131.55,127.71,111.24,90.88,55.87,55.44,26.62$. HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{Na}^{+}$309.1097; Found 309.1097.

25: According to the general procedure, $\mathbf{1}(0.1 \mathrm{mmol}, 19.9 \mathrm{mg})$ and pyrazine ($2 \mathrm{mmol}, 160.2 \mathrm{mg}$) was converted to corresponding product ($10.8 \mathrm{mg}, 54 \%$), which was purified through column chromatography ($2 / 1$ petroleum ether/ethyl acetate, $\left.R_{\mathrm{f}}=0.35\right)$ as a white solid; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.10(\mathrm{~s}, 1 \mathrm{H})$, $8.74-8.65(\mathrm{~m}, 1 \mathrm{H}), 8.58(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.23-8.06(\mathrm{~m}, 4 \mathrm{H}), 2.67(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.65,151.64,144.48,143.70,142.43,140.49,137.93,129.05$, 127.14, 26.81. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}^{+}$199.0866; Found 199.0865.

General Procedures for hydrogenation reaction: aryl halides (0.1 mmol), $\mathrm{Me}_{\mathbf{4}} \mathrm{L}-\mathrm{OH}(2 \mathrm{mg})$, $\mathrm{MeCN} / \mathrm{MeOH}(0.5 \mathrm{~mL} / 0.5 \mathrm{~mL}), \mathrm{Cs}_{2} \mathrm{CO}_{3}(39.1 \mathrm{mg})$, DIPEA (64.6 mg), $\mathrm{H}_{2} \mathrm{O}(18.0 \mathrm{mg})$, and triethylene glycol dimethyl ether $(85.6 \mathrm{mg})$ were added in a 10 mL Schlenck tube, the reaction was stirred at room temperature for 10 h in Ar atmosphere under the irradiation of 5 W white light LEDs in a paralleled reactor. After the reaction finished, anisole was added as internal standard, the yield was determined by GC.

General Procedures for borylation reaction: aryl halides (0.1 mmol), $\mathbf{B}_{\mathbf{2}} \mathbf{p i n}_{\mathbf{2}}(0.5 \mathrm{mmol}, 127.0$ $\mathrm{mg}), \mathbf{M e}_{4} \mathbf{L}-\mathbf{O H}(2 \mathrm{mg}), \mathrm{MeCN} / \mathrm{MeOH}(0.5 \mathrm{~mL} / 0.5 \mathrm{~mL}), \mathrm{Cs}_{2} \mathrm{CO}_{3}(39.1 \mathrm{mg})$, and triethylene glycol dimethyl ether $(85.6 \mathrm{mg})$ were added in a 10 mL Schlenck tube, the reaction was stirred at room temperature for 16 h in Ar atmosphere under the irradiation of 5 W white light LEDs in a paralleled reactor. After the reaction finished, 1,3,5-trimethoxybenzene was added as internal standard, then $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ was added and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The product was isolated through column chromatography.

34: According to the general procedure, $\mathbf{1}(0.1 \mathrm{mmol}, 19.9 \mathrm{mg})$ and $\mathbf{B}_{2} \mathbf{p i n} 2(0.5$ $\mathrm{mmol}, 127.0 \mathrm{mg}$) was converted to corresponding product ($21.8 \mathrm{mg}, 87 \%$), which was purified through column chromatography ($1 / 1$ petroleum ether/dichloromethane, $R_{\mathrm{f}}=0.30$) as a white solid; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.99-7.82(\mathrm{~m}, 4 \mathrm{H}), 2.60(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{~s}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 198.46, 138.99, 134.92, 127.29, 84.21, 26.77, 24.88. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{14} \mathrm{H}_{20}{ }^{11} \mathrm{BO}_{3}{ }^{+}$247.1500; Found 247.1501.

35: According to the general procedure, 4-bromobenzophenone (0.1 mmol , $26.1 \mathrm{mg})$ and $\mathbf{B}_{2} \mathbf{p i n}_{2}(0.5 \mathrm{mmol}, 127.0 \mathrm{mg})$ was converted to corresponding product ($21.9 \mathrm{mg}, 71 \%$), which was purified through column chromatography ($20 / 1$ petroleum ether/ethyl acetate, $R_{\mathrm{f}}=0.30$) as a white solid; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.92(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.79(\mathrm{~d}, J=$ $7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.77(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.37(\mathrm{~s}$, $12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.95,139.78,137.51,134.57,132.55,130.13,129.02$,

36: According to the general procedure, methyl 4-bromobenzoate (0.1 mmol , 21.5 mg) and $\mathbf{B}_{2} \mathbf{p i n}_{\mathbf{2}}(0.5 \mathrm{mmol}, 127.0 \mathrm{mg})$ was converted to corresponding product ($24.6 \mathrm{mg}, 94 \%$), which was purified through column chromatography (20/1 petroleum ether/ethyl acetate, $\left.R_{\mathrm{f}}=0.40\right)$ as a white solid; ${ }^{1} \mathrm{H}$ NMR $(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.02(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.87(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{~s}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.15,134.67,132.31,128.60,84.18,52.15,24.89$. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{14} \mathrm{H}_{20}{ }^{11} \mathrm{BO}_{4}{ }^{+}$263.1449; Found 263.1450.

37: According to the general procedure, methyl 6-bromo-2-naphthoate $(0.1 \mathrm{mmol}, 26.5 \mathrm{mg})$ and $\mathbf{B}_{2} \mathbf{p i n}_{2}(0.5 \mathrm{mmol}, 127.0 \mathrm{mg})$ was converted to corresponding product ($22.7 \mathrm{mg}, 73 \%$), which was purified through column chromatography ($10 / 1$ petroleum ether/ethyl acetate, $R_{\mathrm{f}}=0.65$) as a white solid; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.59(\mathrm{~s}, 1 \mathrm{H}), 8.39(\mathrm{~s}, 1 \mathrm{H}), 8.05(\mathrm{dd}, J=8.7,1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.96-7.84(\mathrm{~m}, 3 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H}), 1.39(\mathrm{~s}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.22,135.86$, $134.80,134.04,131.20,130.82,128.87,128.35,128.31,125.20,84.16,52.27,24.93$. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{22}{ }^{11} \mathrm{BO}_{4}{ }^{+}$313.1606; Found 313.1606.

General Procedures for thioetherification reaction: aryl halides (0.1 mmol), disulfides (2 $\mathrm{mmol}), \mathrm{Me}_{4} \mathrm{~L}-\mathrm{OH}(2 \mathrm{mg}), \mathrm{MeCN} / \mathrm{MeOH}(0.5 \mathrm{~mL} / 0.5 \mathrm{~mL}), \mathrm{Cs}_{2} \mathrm{CO}_{3}(39.1 \mathrm{mg})$, and triethylene glycol dimethyl ether (85.6 mg) were added in a 10 mL Schlenck tube, the reaction was stirred at room temperature for 16 h in Ar atmosphere under the irradiation of 5 W white light LEDs in a paralleled reactor. After the reaction finished, $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ was added and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The product was isolated through column chromatography.

38: According to the general procedure, $\mathbf{1}(0.1 \mathrm{mmol}, 19.9 \mathrm{mg})$ and MeSSMe (2 mmol, 188.4 mg) was converted to corresponding product ($15.3 \mathrm{mg}, 92 \%$), which was purified through column chromatography ($20 / 1$ petroleum ether/ethyl acetate, $R_{\mathrm{f}}=0.40$) as a white solid; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.85(\mathrm{~d}, J=$ $8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.55(\mathrm{~s}, 3 \mathrm{H}), 2.50(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 197.17, 145.89, 133.49, 128.73, 124.95, 26.43, 14.76. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{OS}^{+}$ 167.0525; Found 167.0526.

39: According to the general procedure, 4-bromobenzophenone $(0.1 \mathrm{mmol}$, 26.1 mg) and MeSSMe ($2 \mathrm{mmol}, 188.4 \mathrm{mg}$) was converted to corresponding product $(21.4 \mathrm{mg}, 94 \%)$, which was purified through column chromatography ($20 / 1$ petroleum ether/ethyl acetate, $R_{\mathrm{f}}=0.50$) as a white solid; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.77-7.64(\mathrm{~m}, 4 \mathrm{H}), 7.51(\mathrm{tt}, J=7.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{t}, J=$ $7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 195.86, 145.30, 137.87, 133.65, 132.21, 130.68, 129.85, 128.28, 124.85, 14.86. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{OS}^{+}$229.0682; Found 229.0684.

40: According to the general procedure, methyl 4-bromobenzoate (0.1 mmol , 21.5 mg) and MeSSMe ($2 \mathrm{mmol}, 188.4 \mathrm{mg}$) was converted to corresponding product $(16.4 \mathrm{mg}, 90 \%)$, which was purified through column chromatography (20/1 petroleum ether/ethyl acetate, $\left.R_{\mathrm{f}}=0.55\right)$ as a white solid; ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.93(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 2.51(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 166.88,145.43,129.89,126.28,124.93,52.03,14.83$. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{O}_{2} \mathrm{~S}^{+}$183.0474; Found 183.0475.

41: According to the general procedure, methyl 6-bromo-2-naphthoate ($0.1 \mathrm{mmol}, 26.5 \mathrm{mg}$) and MeSSMe ($2 \mathrm{mmol}, 188.4 \mathrm{mg}$) was converted to corresponding product $(21.1 \mathrm{mg}, 91 \%)$, which was purified through column chromatography ($10 / 1$ petroleum ether/ethyl acetate, $R_{\mathrm{f}}=0.70$) as a white solid; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.52(\mathrm{~s}, 1 \mathrm{H}), 8.04(\mathrm{dd}, J=8.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~d}$, $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~s}, 1 \mathrm{H}), 7.40(\mathrm{dd}, J=8.7,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{~s}, 3 \mathrm{H})$, $2.59(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.21,139.82,135.97,130.88,130.14,129.41,126.87$, 126.56, 126.12, 125.99, 122.07, 52.21, 15.24. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{O}_{2} \mathrm{~S}^{+}$ 233.0631; Found 233.0629

42: According to the general procedure, 4-bromobenzonitrile ($0.1 \mathrm{mmol}, 18.2$ mg) and MeSSMe ($2 \mathrm{mmol}, 188.4 \mathrm{mg}$) was converted to corresponding product ($11.2 \mathrm{mg}, 75 \%$), which was purified through column chromatography (20/1 petroleum ether/ethyl acetate, $\left.R_{\mathrm{f}}=0.60\right)$ as a white solid; ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.52(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.50(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , CDCl_{3}) $\delta 146.15,132.17,125.50,119.01,107.64,14.70$. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{NS}^{+}$ 150.0372; Found 150.0373.

43: According to the general procedure, 3-bromoquinoline ($0.1 \mathrm{mmol}, 20.8 \mathrm{mg}$) and MeSSMe ($2 \mathrm{mmol}, 188.4 \mathrm{mg}$) was converted to corresponding product (15.6 $\mathrm{mg}, 89 \%$), which was purified through column chromatography (20/1 petroleum ether/ethyl acetate, $\left.R_{\mathrm{f}}=0.30\right)$ as a colorless oil; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.79(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.05(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H})$, 7.63 (ddd, $J=8.4,6.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.46(\mathrm{~m}, 1 \mathrm{H}), 2.59(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.95,145.89,132.70,131.38,129.30,128.65,128.35,127.24,126.70,15.86$. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{NS}^{+}$176.0528; Found 176.0530.

44: According to the general procedure, $\mathbf{1}(0.1 \mathrm{mmol}, 19.9 \mathrm{mg})$ and EtSSEt (2 mmol, 244.5 mg) was converted to corresponding product ($17.3 \mathrm{mg}, 96 \%$), which was purified through column chromatography (20/1 petroleum ether/ethyl acetate, $\left.R_{\mathrm{f}}=0.40\right)$ as a white solid; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.86(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.03(\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.57(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{t}, J$ $=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 197.24,144.66,133.80,128.78,126.31,26.44,26.07$, 13.93. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{OS}^{+}$181.0682; Found 181.0682.

45: According to the general procedure, $\mathbf{1}(0.1 \mathrm{mmol}, 19.9 \mathrm{mg})$ and \boldsymbol{n}-propyl
disulfide ($2 \mathrm{mmol}, 300.6 \mathrm{mg}$) was converted to corresponding product ($18.4 \mathrm{mg}, 95 \%$), which was purified through column chromatography ($20 / 1$ petroleum ether/ethyl acetate, $R_{\mathrm{f}}=0.42$) as a white solid; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.85(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.98(\mathrm{t}, J=$ $7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.57(\mathrm{~s}, 3 \mathrm{H}), 1.74(\mathrm{~h}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.06(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 197.22,144.93,133.74,128.75,126.33,33.95,26.44,22.19,13.50$. HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$ Calcd for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{OS}^{+}$195.0838; Found 195.0840.

46: According to the general procedure, $\mathbf{1}(0.1 \mathrm{mmol}, 19.9 \mathrm{mg})$ and \boldsymbol{n} butyl disulfide ($2 \mathrm{mmol}, 356.7 \mathrm{mg}$) was converted to corresponding product ($19.6 \mathrm{mg}, 94 \%$), which was purified through column chromatography ($20 / 1$ petroleum ether/ethyl acetate, $R_{\mathrm{f}}=0.50$) as a colorless oil; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.85(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.00$ (t, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.57(\mathrm{~s}, 3 \mathrm{H}), 1.69(\mathrm{p}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.48(\mathrm{~h}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 0.95(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.22,145.01,133.72,128.75,126.26,31.65,30.80$, 26.44, 22.03, 13.63. HRMS (ESI) [M+H] ${ }^{+}$Calcd for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{OS}^{+}$209.0995; Found 209.0995.

47: According to the general procedure, $\mathbf{1}(0.1 \mathrm{mmol}, 19.9 \mathrm{mg})$ and cyclohexyl disulfide ($2 \mathrm{mmol}, 460.8 \mathrm{mg}$) was converted to corresponding product ($18.2 \mathrm{mg}, 77 \%$), which was purified through column chromatography ($20 / 1$ petroleum ether/ethyl acetate, $R_{\mathrm{f}}=0.50$) as a white solid; ${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform- d) $\delta 7.85$ (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$), 7.35 (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$), 3.36 $-3.27(\mathrm{~m}, 1 \mathrm{H}), 2.57(\mathrm{~s}, 3 \mathrm{H}), 2.18-1.98(\mathrm{~m}, 2 \mathrm{H}), 1.86-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.70-1.63(\mathrm{~m}, 1 \mathrm{H}), 1.52-$ $1.22(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 197.27, 143.58, 134.20, 128.72, 128.39, 44.97, 33.09, 26.47, 25.94, 25.69. HRMS (ESI) [M+H] ${ }^{+}$Calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{OS}^{+}$235.1151; Found 235.1151.

S6 EPR Measurements

EPR spectra was measured on a Bruker model A300 spectrometer at room temperature, and the spectrometer parameters are shown as follows: sweep width, 100 G ; center field, 3510.890 G ; microwave bridge frequency, 9.839 GHz ; power, 20.37 mW ; modulation frequency, 100 kHz ; modulation amplitude, 1 G ; conversion time, 42.00 s ; sweep time 42.00 s ; receiver gain, 2.00×10^{4}. The preparation of the sample was same as the corresponding photocatalyst reaction. The signal after irradiation was measured after 5 min of irradiation of a 50 W Xe lamp with stirring, and the mixture was transferred to 3 mm glass tubes as soon as possible to record the signals.

S7 Cartesian Coordinates of the Optimized Structure

$\mathrm{Me}_{4} \mathrm{~L}-\mathrm{OH}$ in S_{0} state

	X	Y	Z
C	-3.98241887	-0.57721633	-1.81371736
C	-2.76424147	-1.29263391	-1.96995008
C	-1.67178081	-1.03253821	-1.17946195
C	-1.72345968	-0.04097337	-0.16748647
C	-2.94151256	0.68056151	0.00083078
C	-4.04663863	0.39598279	-0.83336163

C	-0.61703166	0.25684661	0.68336476
C	-0.73910137	1.24754713	1.64983976
C	-1.95353520	1.98108593	1.82439607
C	-3.01815862	1.67399113	1.00591342
C	0.67383178	-0.48187859	0.57238878
C	1.78522703	0.05809215	-0.14144676
C	3.00155927	-0.68396540	-0.19522245
C	3.06565744	-1.94501919	0.44428217
C	1.99566935	-2.48452465	1.12419957
C	0.78768943	-1.72260589	1.18729956
C	1.74001296	1.31101120	-0.80309803
C	2.83455243	1.79347758	-1.47736842
C	4.05343821	1.06465113	-1.53537513
C	4.11245033	-0.15962328	-0.89498114
O	0.27607371	1.54151810	2.48656996
O	-0.23157826	-2.25328314	1.89227969
C	-2.09081297	3.02878829	2.86259593
C	2.11885886	-3.80930473	1.77540531
C	-5.14561756	-0.87187114	-2.67736487
C	5.21945620	1.60300995	-2.26800659
C	-3.25051914	3.07712226	3.65017762
C	-3.42733330	4.07092357	4.60378145
C	-2.44247537	5.04530868	4.78953508
C	-1.28425757	5.00675346	4.00729261
C	-1.10726929	4.01053004	3.05877681
C	3.28105795	-4.12490650	2.49448256
C	3.44484618	-5.37444104	3.07781037
C	2.44293501	-6.34129232	2.95384242
C	1.28109367	-6.03595932	2.23863814
C	1.11849148	-4.78688152	1.65846110
C	-6.02677111	0.14719694	-3.07203896
C	-7.12385477	-0.12693555	-3.87651651
C	-7.36758630	-1.43375345	-4.31171745
C	-6.49524480	-2.45590647	-3.92673971
C	-5.39957701	-2.17890951	-3.12262209
C	5.04799096	2.37536656	-3.42755795
C	6.14056539	2.87610487	-4.12228203
C	7.43902639	2.61785956	-3.67169840
C	7.62132758	1.85211176	-2.51615257
C	6.52818005	1.35336352	-1.82423421
C	-2.57372302	6.12997565	5.79485432
O	-1.74041235	6.99538244	5.97769548
O	-3.71680021	6.05333809	6.48548862
C	-3.90725503	7.06749909	7.47414344
C	2.55988884	-7.69292235	3.55714268
O	1.70322846	-8.55134924	3.47969874
O	3.71946921	-7.86858443	4.20032708
C	3.89794648	-9.14951088	4.80826571
C	-8.52237335	-1.78490970	-5.17495122
O	-8.76524009	-2.90947750	-5.56678908
O	-9.27626815	-0.72250361	-5.48039582
C	-10.40732356	-0.98983452	-6.31171533
C	8.64348530	3.12825149	-4.37234750
O	9.78396747	2.93525417	-3.99917685
O	8.33952515	3.82959457	-5.47043257
C	9.45501888	4.35025845	-6.19604883
H	-2.68612718	-2.04469424	-2.75058904
H	-0.74945405	-1.58493650	-1.33602085

H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H

-4.96798361	0.94949094	-0.66799029
-3.94894016	2.22508639	1.11635592
3.99188682	-2.51075706	0.37636350
0.82537411	1.89635554	-0.77098403
2.77318193	2.76592607	-1.95804303
5.01827602	-0.75956730	-0.93913721
-0.97974057	-1.62773340	1.86916046
-4.01523624	2.31531046	3.52442811
-4.32780824	4.08552642	5.20909796
-0.52556736	5.77038717	4.15066774
-0.20472807	3.99778279	2.45719999
4.05836386	-3.37449920	2.61094031
4.34863048	-5.59645719	3.63589172
0.50899768	-6.79310195	2.13930960
0.21389155	-4.56927570	1.10085203
-5.83775472	1.17160797	-2.76358323
-7.78783707	0.67722622	-4.17665537
-6.69135154	-3.47066221	-4.26002616
-4.74530399	-2.99053233	-2.81672392
4.04776468	2.56872740	-3.80521187
5.98510502	3.46316910	-5.02160835
8.63048479	1.66171500	-2.16305550
6.68890372	0.78144317	-0.91445644
-4.86883392	6.84847829	7.93933289
-3.10961937	7.03250052	8.22114211
-3.92863604	8.05807297	7.01170888
4.88294839	-9.11909896	5.27497916
3.12764694	-9.32870406	5.56331593
3.86076343	-9.94222258	4.05615114
-10.89740027	-0.02720669	-6.46085659
-10.09071157	-1.40497835	-7.27240985
-11.09014785	-1.68899484	-5.82129857
9.03011707	4.87516721	-7.05219147
10.02945888	5.04333147	-5.57533476
10.10698753	3.54059866	-6.53495505
1.02637276	0.95428239	2.27657154

$\mathrm{Me}_{4} \mathbf{L}-\mathrm{O}^{-}$in S_{0} state

	X	Y	Z
C	-3.98583580	1.76116426	-1.21007534
C	-2.73823794	1.71997014	-1.89639121
C	-1.64494337	1.08170698	-1.36841565
C	-1.70458068	0.42498601	-0.10383434
C	-2.96282187	0.45076893	0.58347865
C	-4.06823692	1.12431583	0.01603377
C	-0.60317419	-0.26972247	0.45764861
C	-0.69545811	-0.92128420	1.72449983
C	-1.99517335	-0.88612076	2.40024056
C	-3.06363016	-0.23008042	1.82333778
C	0.66083973	-0.44838944	-0.30651732
C	1.77970297	0.39329947	-0.07955999
C	3.03150578	0.11075293	-0.71926402
C	3.10616344	-1.01324618	-1.58054401
C	2.02200407	-1.82791233	-1.83495630
C	0.73016561	-1.56241924	-1.19659922
C	1.74388595	1.51148256	0.80468967

C	2.84952086	2.29647103	1.01221545
C	4.09105864	2.02818634	0.36753744
C	4.15280061	0.93736630	-0.48207749
O	0.28557207	-1.56233877	2.24016036
O	-0.26497587	-2.34140666	-1.40234931
C	-2.17966124	-1.57105252	3.69852160
C	2.17935599	-2.98267491	-2.74612820
C	-5.15092382	2.45114042	-1.79819734
C	5.26769445	2.88922578	0.59855808
C	-3.36852584	-2.26708538	3.97166989
C	-3.58021688	-2.87867218	5.20029438
C	-2.59987862	-2.80987903	6.19495454
C	-1.41012637	-2.12221288	5.93350182
C	-1.19910449	-1.51694565	4.70378277
C	3.34986147	-3.75818289	-2.71628895
C	3.53585578	-4.81713523	-3.59534408
C	2.54768878	-5.13036571	-4.53361609
C	1.37587739	-4.36713320	-4.57048840
C	1.19008971	-3.31425239	-3.68746608
C	-6.10933837	3.07853424	-0.98403135
C	-7.21147139	3.71762934	-1.53310459
C	-7.38586016	3.75444667	-2.92099069
C	-6.43657301	3.13857428	-3.74233511
C	-5.33778054	2.49770212	-3.19046137
C	5.12046849	4.26113145	0.86395472
C	6.22464223	5.07591433	1.07167040
C	7.51576709	4.54024651	1.01938074
C	7.67562323	3.17530069	0.75949792
C	6.57086301	2.36358368	0.55578648
C	-2.76764674	-3.44307428	7.52555142
O	-1.93157438	-3.41425944	8.40761560
O	-3.95049359	-4.05600495	7.65768476
C	-4.17781141	-4.68772782	8.91870282
C	2.68847260	-6.24863529	-5.49767340
O	1.84654088	-6.55350526	-6.31993489
O	3.85349567	-6.89543425	-5.36849816
C	4.05378391	-7.98634082	-6.26893231
C	-8.54200228	4.42413545	-3.56336586
O	-8.72164340	4.47723647	-4.76463151
O	-9.37889689	4.97050449	-2.67260933
C	-10.51822334	5.63224683	-3.22478309
C	8.73148134	5.36223244	1.22890863
O	9.86615965	4.92692225	1.19412670
O	8.44772268	6.64974799	1.46127727
C	9.57687380	7.50045567	1.66646288
H	-2.63989403	2.23209535	-2.85009031
H	-0.70275192	1.08494645	-1.90993072
H	-5.00900736	1.10641738	0.56236245
H	-4.01987789	-0.20364573	2.34285313
H	4.05593882	-1.21647726	-2.07218900
H	0.81442379	1.73935239	1.31969007
H	2.78019865	3.13075427	1.70559212
H	5.07447456	0.70677944	-1.01238563
H	-4.13372100	-2.34206534	3.20307489
H	-4.50502910	-3.41567111	5.38542676
H	-0.65386869	-2.06625413	6.71121696
H	-0.27154185	-0.99135174	4.51047728
H	4.12134734	-3.53580566	-1.98328112

H	4.44661735	-5.40549591	-3.54846150
H	0.61310000	-4.61041971	-5.30448619
H	0.27609418	-2.73330010	-3.72183249
H	-5.97679995	3.08520341	0.09432005
H	-7.93447817	4.20046209	-0.88344599
H	-6.57692288	3.16112568	-4.81903143
H	-4.62617222	2.00620925	-3.84813610
H	4.12831111	4.70322854	0.88450751
H	6.08446292	6.13443297	1.26614079
H	8.67804338	2.75844214	0.73002111
H	6.71843568	1.30123313	0.38190582
H	-5.17487612	-5.12454181	8.85375245
H	-3.43439002	-5.46908317	9.09899324
H	-4.13858158	-3.95586921	9.73015194
H	5.03548593	-8.39349593	-6.02460577
H	3.28324634	-8.74953321	-6.12899334
H	4.03661810	-7.63955134	-7.30580676
H	-11.07934152	6.01428052	-2.37131133
H	-10.20983106	6.45686146	-3.87320369
H	-11.13245197	4.93128245	-3.79669414
H	9.16818031	8.49775470	1.83256849
H	10.15043970	7.17761701	2.53964530
H	10.22567320	7.50045847	0.78625254
Na	2.19166792	-1.92195289	1.26956750
Na	-2.18218328	-2.21828564	-0.40087972

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, r.t. $)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, r.t.)

${ }^{1} \mathrm{H}$ NMR spectrum of $4\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, r.t.)

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{5}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, r.t.)

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{5}$ ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$, r.t.)

$$
{ }^{1} \mathrm{H} \text { NMR spectrum of } 7\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3} \text {, r.t. }\right)
$$

${ }^{13} \mathrm{C}$ NMR spectrum of $7\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, r.t. $)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{8}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, r.t. $)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{8}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, r.t. $)$

${ }^{13} \mathrm{C}$ NMR spectrum of 9 ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$, r.t. $)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 0}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, r.t. $)$

[^0]$$
{ }^{1} \mathrm{H} \text { NMR spectrum of } \mathbf{1 1}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3} \text {, r.t. }\right)
$$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 1}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, r.t. $)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 2}$ ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, r.t.)

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 3}$ ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, r.t.)

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 3}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, r.t.)

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 4}$ ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, r.t.)

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 4}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, r.t.)

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 5}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, r.t. $)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 5}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, r.t. $)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 6}$ ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, r.t.)

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 6}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, r.t. $)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 7}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, r.t.)
ต\%
i P ị

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 7}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, r.t. $)$

150	140	130	120	110	100	90		70	60	50	40	30	20	10	0

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 8}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, r.t. $)$

${ }^{1} \mathrm{H}$ NMR spectrum of 19 ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, r.t.)

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 9}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, r.t. $)$

[^1]
${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 0}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, r.t. $)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2 0}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, r.t. $)$

${ }^{1} \mathrm{H}$ NMR spectrum of $22\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, r.t.)

${ }^{13} \mathrm{C}$ NMR spectrum of 22 ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$, r.t.)

[^2]${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 3}$ ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, r.t.)

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2 3}$ ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$, r.t.)

${ }^{1} \mathrm{H}$ NMR spectrum of $24\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, r.t. $)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2 4}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, r.t. $)$

[^3]${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 5}$ ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, r.t.)

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2 5}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, r.t. $)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 4}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, r.t.)

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 4}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, r.t. $)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 5}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, r.t.)

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 5}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, r.t. $)$

$\begin{array}{r}\text { 曹 } \\ \text { I } \\ \hline\end{array}$

(1)

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 6}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, r.t. $)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 6}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, r.t. $)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 7}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, r.t. $)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 7}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, r.t. $)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 8}$ ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, r.t.)

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 8}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, r.t. $)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 9}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, r.t. $)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 9}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, r.t.)

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 0}$ ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, r.t.)

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4 0}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, r.t.)

${ }^{1} \mathrm{H}$ NMR spectrum of 41 ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, r.t.)

${ }^{13} \mathrm{C}$ NMR spectrum of 41 ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$, r.t.)

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 2}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, r.t. $)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4 2}$ ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$, r.t.)

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4 3}$ ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$, r.t.)

${ }^{1} \mathrm{H}$ NMR spectrum of $44\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, r.t. $)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 5}$ ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, r.t.)

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4 5}$ ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$, r.t.)

芷

年

${ }^{1} \mathrm{H}$ NMR spectrum of 46 ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, r.t.)

${ }^{13} \mathrm{C}$ NMR spectrum of $46\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, r.t. $)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 7}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, r.t.)

${ }^{13} \mathrm{C}$ NMR spectrum of $47\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, r.t. $)$

[^4]
References

1. Z. Zhao, M. Liu, K. Zhou, L. Guo, Y. Shen, D. Lu, X. Hong, Z. Bao, Q. Yang, Q. Ren, P. R. Schreiner and Z. Zhang, ACS Appl. Mater. Interfaces, 2023, 15, 6982-6989.
2. Gaussian 09, Revision E.01. G. R. E. 01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. K. T. Keith, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013.
3. I. Ghosh, T. Ghosh, J. I. Bardagi and B. König, Science, 2014, 346, 725-728.
4. E. H. Discekici, N. J. Treat, S. O. Poelma, K. M. Mattson, Z. M. Hudson, Y. Luo, C. J. Hawker and J. Read de Alaniz, Chem. Commun., 2015, 51, 11705-11708.
5. J. I. Bardagi, I. Ghosh, M. Schmalzbauer, T. Ghosh and B. König, Eur. J. Org. Chem., 2018, 2018, 34-40.
6. T. Constantin, F. Julia, N. S. Sheikh and D. Leonori, Chem. Sci., 2020, 11, 12822-12828.
7. S. Jin, H. T. Dang, G. C. Haug, R. He, V. D. Nguyen, V. T. Nguyen, H. D. Arman, K. S. Schanze and O. V. Larionov, J. Am. Chem. Soc., 2020, 142, 1603-1613.
8. K. Liang, Q. Liu, L. Shen, X. Li, D. Wei, L. Zheng and C. Xia, Chem. Sci., 2020, 11, 6996-7002.
9. W. Ou, R. Zou, M. Han, L. Yu and C. Su, Chin. Chem. Lett., 2020, 31, 1899-1902.
10. A. F. Chmiel, O. P. Williams, C. P. Chernowsky, C. S. Yeung and Z. K. Wickens, J. Am. Chem. Soc., 2021, 143, 10882-10889.
11. M. Li, J. Li, B. Guo, X. Liu, Z. Yuan, Y. Wu, H. Yin, S. Huang, Y. Zhang and Y. Rao, J. Catal., 2021, 399, 111-120.
12. Y. Li, Z. Ye, Y. M. Lin, Y. Liu, Y. Zhang and L. Gong, Nat Commun, 2021, 12, 2894.
13. J. Xu, J. Cao, X. Wu, H. Wang, X. Yang, X. Tang, R. W. Toh, R. Zhou, E. K. L. Yeow and J. Wu, J. Am. Chem. Soc., 2021, 143, 13266-13273.
14. N. Shen, R. Li, C. Liu, X. Shen, W. Guan and R. Shang, ACS Catal., 2022, 12, 2788-2795.
15. L. Zeng, L. Huang, W. Lin, L. H. Jiang and G. Han, Nat Commun, 2023, 14, 1102.

[^0]: | 150 | 145 | 140 | 135 | 130 | 125 | 120 | 115 | 110 | 105 | 100 | 95 | 90 | 85 | 80 | 75 | 70 | 65 | 60 | 55 | 50 | 45 | 40 | 35 | 30 | 25 | 20 | 15 | 10 | 5 | 0 |
 | :--- |

[^1]: $\left.\begin{array}{llllllllllllllllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 1 & 1 \\ \delta(\mathrm{ppm})\end{array}\right)$

[^2]:

[^3]:

[^4]:

