Supporting Information

Highly efficient oxidation of ethyl lactate to ethyl pyruvate with molecular oxygen over V_xO_y/SBA 15 catalyst

Jing Xu, Zonghui Liu*, Yali Zhou, Rui Fu, Zhe Wen, Bing Yan, Bing Xue*

Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, Jiangsu, China

* Corresponding author E-mail: <u>liuzh@cczu.edu.cn;</u> <u>xuebing@cczu.edu.cn;</u>

Figure S1. SEM image of SBA-15 (a), $0.5V_xO_y/SBA-15$ (b), $2.7V_xO_y/SBA-15$ (c), $5.9V_xO_y/SBA-15$ (d)

Figure S2. V 2p spectra of V_2O_5 and $5.9V_xO_y$ /SBA-15

Figure S3. The GC-FID spectra of the EL conversion over $5.9V_xO_y$ /SBA-15 catalyst.

Figure S4. Time effect of 0.5SBA-15 (a), $0.9V_xO_y/SBA-15$ (b), $2.7V_xO_y/SBA-15$ (c), $4.5V_xO_y/SBA-15$ (d), $5.9V_xO_y/SBA-15$ (e), $6.9V_xO_y/SBA-15$ (f) on EL reaction.

Figure S5. First-order kinetic fit (A) and Arrhenius plot of conversion of EL over 5.9V_xO_y/SBA-15 (B)

Table S1. The effect of H_2O_2 or HBHP on catalytic performance of $5.9V_xO_y/SBA-15$ catalyst.

Oxygen donor	EL conversion (%)	EP selectivity (%)	EP yield (%)
H_2O_2	28	94	23
TBHP	52	93	48

Reaction conditions: 2 mmol EL, 15 mL acetonitrile, 50 mg catalyst, EL: Oxygen dornor = 1:2, T = 130 °C, t = 4 h.

Figure S6. First-order kinetic fit (A) and Arrhenius plot of conversion of EL over 5.9V_xO_y/SBA-15 (B)