Appendix A: Supporting Information (SI):

Oxygen vacancies stabilized Ag⁺ enhance the performance of Ag/In₂O₃ photocatalyst for nonoxidative coupling of methane

Mingquan Xiao^{a,c}, Liang Wang^{a,b}, Hong Wang^{a,b}, Jie Yuan^{a,b}, Xun Chen^a, Zizhong Zhang^{a,c}, Xianzhi Fu^a*, Wenxin Dai^{* a,c}

^a Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350108, China

^b Key Laboratory of Eco-materials Advanced Technology (Fuzhou University), Fujian

Province, Fuzhou, 350002, China

^c Qingyuan Innovation Laboratory, Quanzhou 362801, China.

*Corresponding author: Wenxin Dai

Tel & Fax: +86-591-83779083

E-mail:

daiwenxin@fzu.edu.cn

&

xzfu@fzu.edu.cn

Fig.S1 The spectrogram of the light source used in the experiment.

Fig.S2 A schematic diagram of the photocatalytic instrument.

Fig.S3 The N_2 adsorption-desorption isotherms of In_2O_3 and Ag/In_2O_3 photocatalysts.

Sample	BET Surface Area	Pore diameter	Pore Volume
	$(m^2 \cdot g^{-1})$	(nm)	$(cm^{3} \cdot g^{-1})$
In ₂ O ₃	50.5	7.3	0.08
$0.5 \text{ wt\% Ag/In}_2O_3$	30.0	11.2	0.08
1 wt% Ag/In ₂ O ₃	23.1	11.1	0.07
$2 \text{ wt\% Ag/In}_2O_3$	17.8	11.0	0.09
$3 \text{ wt\% Ag/In}_2O_3$	17.7	19.8	0.10

Table S1 The BET surface area and pore parameters of In₂O₃ and Ag/In₂O₃ photocatalysts.

Fig.S 4 The STEM-HADDF image and corresponding EDX elements mapping images of In, Ag,

and O elements of Ag/In₂O₃.

Fig.S5 The ethane yields using Ag/In₂O₃ photocatalyst under different conditions.

The results showed that the addition of an oxidant did not increase the yield or selectivity of ethane in Fig.S5.

Fig.S6 The photocatalytic NOCM process over Ag/In₂O₃ with different amounts of catalysts.

To investigate the relationship between photocatalytic activity and catalyst weight, we conducted activity evaluation tests with different catalyst weights in a certain range. The result showed that the highest yield was achieved with a catalyst mass of 20 mg in Fig.S7. And the yield of ethane is not linearly related to the increasing weight of the photocatalyst.

Entry	Reactant	Catalyst	Light	Products
1	_	\checkmark	\checkmark	none
2	\checkmark	_	\checkmark	none
3	\checkmark	\checkmark	_	none
4	\checkmark	\checkmark	\checkmark	C_2H_6 and H_2

Table S2 The result of blank experiments for NOCM over Ag/In₂O₃ photocatalysts.

To confirm the importance of individual experimental conditions for methane

coupling, then we conducted control experiments in the absence of methane, photocatalysts, or light irradiation. No ethane was detected, indicating the nature of the reaction was photocatalysis.

Fig.S7 The AgM₄VV Auger spectra of Ag/In₂O₃ before and after the reaction.

Table S3 Relative contents of O_{Lat} and O_{ad} over In_2O_3 and Ag/In_2O_3 photocatalysts under different

conditions.

Samples	O _{Lat} (%)	Ov(%)	OH(%)
Ag/In ₂ O ₃ (Before)	53.86	38.96	7.17
Ag/In ₂ O ₃ (After)	54.18	36.15	9.67

Fig.S8 The photocatalytic NOCM performance over Ag/In_2O_3 photocatalyst in the presence of

CH₃OH and hydroquinone.

Fig.S9 The CH_4 -TPD patterns of In_2O_3 and Ag/In_2O_3 photocatalysts.

Table S4 Representative works on	photocatalytic NOCM reaction
---	------------------------------

Samples	Reactor	Conditions	The yield rate of	References
	type		$C_2H_6{}^a$	

Ag/In ₂ O ₃	Batch	300 W Xe lamp for	9.0 μmol h ⁻¹	This work
	reactor	4 h; 20 mg catalyst;		
		175 mL CH ₄		
Al ₂ O ₃	Batch	250 W Xe lamp for	0.296 µmol h ⁻¹	[1]
	reactor	18 h; 1.0 g catalyst;		
		100 μmol CH ₄		
SiO ₂ -Al ₂ O ₃	Batch	250 W Xe lamp for	0.328 μmol h ⁻¹	[1]
	reactor	18 h; 1.0 g catalyst;		
		100 μmol CH ₄		
SiO ₂	Batch	250 W Xe lamp for	0.013 µmol h-1	[2]
	reactor	3 h; 1.0 g catalyst;		
		100 μmol CH ₄		
Al ₂ O ₃ -TiO ₂	Batch	250 W Xe lamp for	0.466 µmol h ⁻¹	[2]
	reactor	3 h; 1.0 g catalyst;		
		100 μmol CH ₄		
SiO ₂ -Al ₂ O ₃ -	Batch	250 W Xe lamp for	1.65 μmol h ⁻¹	[3]
TiO ₂	reactor	3 h; 1.0 g catalyst;		
		100 μ mol CH ₄		
FSM-16	Batch	300 W Xe lamp for	0.038 µmol h ⁻¹	[4]
	reactor	3 h; 0.2 g catalyst;		
		200 μ mol CH ₄		
Ga ₂ O ₃	Batch	300 W Xe lamp for	0.113 μmol h ⁻¹	[5]

	reactor	3 h; 0.2 g catalyst;		
		200 μ mol CH ₄		
(Zn^+, Zn^{2+}) -	Batch	150 W high-	9.80 μmol h ⁻¹	[6]
ZSM-5 ⁻	reactor	pressure Hg lamp		
		for 8 h; 1 g		
		catalyst; 200 µmol		
		CH ₄		
Ga-ETS	Batch	150 W high-	5.96 µmol h ⁻¹	[7]
	reactor	pressure Hg lamp		
		for 5 h; 0.2 g		
		catalyst; 200 µmol		
		CH ₄		
Au/m-ZnO	Batch	300 W Xe lamp for	0.0235 μmol h ⁻¹	[8]
	reactor	4 h; 1 mg catalyst;		
		22.3 μmol CH ₄		
Pt/HGTS	Batch	300 W Xe lamp for	0.695 µmol h ⁻¹	[9]
	reactor	4 h; 0.2 g catalyst;		
		44.6 μmol CH ₄		
Au/TiO ₂	Flow	AM 1.5 G sunlight;	2.73 μmol h ⁻¹	[10]
	reactor	5 mg catalyst; 10%		
		CH ₄ , 90% Ar,		
		GHSV = 120000		

		$mL\bullet g^{-1}\bullet h^{-1}$		
Pd/Ga ₂ O ₃	Flow	300 W Xe lamp;	1.02 μmol h ⁻¹	[11]
	reactor	0.8 g catalyst; 30		
		mL/min gas(10%		
		CH ₄ , 90% Ar)flow		
		rate		
Ag-	Batch	400 W Xe lamp for	2.3 μmol h ⁻¹	[12]
HPW/TiO ₂	reactor	7 h; 0.1 g catalyst;		
		0.3 MPa CH ₄		
Pd-	Flow	300 W Xe lamp;	1.1 μmol h ⁻¹	[13]
Bi/Ga ₂ O ₃	reactor	0.8 g catalyst; 30		
		mL/min gas(10%		
		CH ₄ , 90% Ar)flow		
		rate		
ZnO-AuPd	Batch	300 W Xe lamp for	0.588 μmol h ⁻¹	[14]
	reactor	8 h; 2 mg catalyst;		
		22.3 μmol CH ₄		
Pd/TiO ₂	Batch	300 W Xe lamp for	2.73 µmol h ⁻¹	[15]
	reactor	3 h; 3 mg catalyst;		
		0.1 MPa CH ₄		

^a The reaction rate is not always proportional to the photocatalyst weight.

References

- 1. Y. Kato, H. Yoshida and T. Hattori, *Chem. Commun.*, 1998, **21**, 2389-2390.
- Y. Kato, N. Matsushita, H. Yoshida and T. Hattori, *Catal. Commun.*, 2002, 3, 99-103.
- H. Yoshida, N. Matsushita, Y. Kato and T. Hattori, *J, Phys. Chem. B*, 2003, 107, 8355-8362.
- L. Yuliati, M. Tsubota, A. Satsuma, H. Itoh and H. Yoshida, *J. Catal.*, 2006, 238, 214-220.
- 5. L. Yuliati, T. Hattori, H. Itoh and H. Yoshida, J. Catal., 2008, 257, 396-402.
- L. Li, G.-D. Li, C. Yan, X.-Y. Mu, X.-L. Pan, X.-X. Zou, K.-X. Wang and J.-S. Chen, Angew. Chem. Int. Ed., 2011, 50, 8299-8303.
- L. Li, Y.-Y. Cai, G.-D. Li, X.-Y. Mu, K.-X. Wang and J.-S. Chen, *Angew. Chem. Int. Ed.*, 2012, **51**, 4702-4706.
- L. Meng, Z. Chen, Z. Ma, S. He, Y. Hou, H.-H. Li, R. Yuan, X.-H. Huang, X. Wang, X. Wang and J. Long, *Energy Environ. Sci.*, 2018, 11, 294-298.
- S. Wu, X. Tan, J. Lei, H. Chen, L. Wang and J. Zhang, J. Am. Chem. Soc., 2019, 141, 6592-6600.
- J. Lang, Y. Ma, X. Wu, Y. Jiang and Y. H. Hu, *Green Chem.*, 2020, 22, 4669-4675.
- S. P. Singh, A. Anzai, S. Kawaharasaki, A. Yamamoto and H. Yoshida, *Catal. Today*, 2021, **375**, 264-272.
- 12. X. Yu, V. L. Zholobenko, S. Moldovan, D. Hu, D. Wu, V. V. Ordomsky and A.

Y. Khodakov, Nat. Energy, 2020, 5, 511-519.

- S. P. Singh, A. Yamamoto, E. Fudo, A. Tanaka, H. Kominami and H. Yoshida, ACS Catal., 2021, 11, 13768-13781.
- W. Jiang, J. Low, K. Mao, D. Duan, S. Chen, W. Liu, C.-W. Pao, J. Ma, S. Sang,
 C. Shu, X. Zhan, Z. Qi, H. Zhang, Z. Liu, X. Wu, R. Long, L. Song and Y.
 Xiong, *J. Am. Chem. Soc.*, 2021, **143**, 269-278.
- W. Zhang, C. Fu, J. Low, D. Duan, J. Ma, W. Jiang, Y. Chen, H. Liu, Z. Qi, R. Long, Y. Yao, X. Li, H. Zhang, Z. Liu, J. Yang, Z. Zou and Y. Xiong, *Nat. Commun.*, 2022, 13.