Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2023

Figure S1. Simplified schematic of the flame spray pyrolysis apparatus.

Figure S2. BET isotherms for Pt/TiO_2 catalysts prepared using flame spray pyrolysis (FSP) at (a) 0.07, (b) 0.14, (c) 0.33, and (d) 0 weight % Pt and incipient wetness (IW) at (e) 0.07, (f) 0.14, (g) 0.27, and 0 weight % Pt.

Figure S3. NH_3 -TPD profiles for Pt/TiO₂ catalysts prepared using (a) FSP and (b) IW methods

Figure S4. XRD patterns of IW-derived Pt/TiO₂ and TiO₂ with reference patterns provided below.

Catalyst	Pore volume	Average nore size
Cuturyst	$(cm^3 \cdot g^{-1})$	(nm)
FSP-TiO ₂	0.24	10
$P25-TiO_2$	0.43	15
$FSP-Pt(0.07)/TiO_2$	0.23	11
$FSP-Pt(0.14)/TiO_2$	0.27	13
$FSP-Pt(0.33)/TiO_2$	0.45	21
IW-Pt(0.07)/TiO ₂	0.44	33
$IW-Pt(0.14)/TiO_2$	0.47	36
IW-Pt (0.27) /TiO ₂	0.59	21

Table S1. Pore volume and pore size of Pt/TiO_2 catalysts and control materials as determined by N_2 physisorption

Table S2. Mass % of rutile and anatase titania phases as determined by the RIR method and their respective crystallite sizes by Scherrer analysis for all FSP-Pt/TiO₂, IW-Pt/TiO₂ catalysts and their bare FSP-TiO₂ and P25-TiO₂ analogues.

Material	Anatase (mass%)	Anatase Crystallite Size (nm, XRD)	Rutile (mass%)	Rutile Crystallite Size (nm, XRD)
FSP-TiO ₂	81.7	28.9(4)	18.3	37.9(30)
P25–TiO ₂	92.5	19.84(1)	7.5	29.3(5)
FSP-Pt(0.07)/TiO ₂	84.6	26.1(3)	15.4	33.4(20)
FSP-Pt(0.14)/TiO ₂	85.2	31.4(5)	14.8	34.8(26)
FSP-Pt(0.33)/TiO ₂	83.8	33.6(4)	16.2	43.0(41)
IW-Pt(0.07)/TiO2	91.3	19.07(16)	8.7	28.2(13)
IW-Pt(0.14)/TiO ₂	92.1	17.59(16)	7.9	23.9(15)
IW-Pt(0.27)/TiO ₂	92.5	18.20(12)	7.5	24.4(6)

Table S3. STEM determined average Pt particle sizes for all FSP- and IW-Pt/TiO₂ catalysts.

Material	Pt Crystallize Size (nm, S/TEM)
FSP-Pt(0.07)/TiO ₂	n.d.
(reduced)FSP-Pt(0.07)/TiO ₂	1.1 ± 0.2
FSP-Pt(0.14)/TiO ₂	0.5 ± 0.2
(reduced)FSP-Pt(0.14)/TiO ₂	1.5 ± 0.7
FSP-Pt(0.33)/TiO ₂	0.8 ± 0.2
(reduced)FSP-Pt(0.30)/TiO ₂	1.3 ± 0.4
IW-Pt(0.07)/TiO ₂	0.9 ± 0.2
IW-Pt(0.14)/TiO ₂	1.1 ± 0.2
IW-Pt(0.27)/TiO ₂	1.3 ± 0.5

Figure S5. TEM images of (a) FSP-Pt(0.07)/TiO₂, (b) FSP-Pt(0.14)/TiO₂, (c) FSP-Pt(0.33)/TiO₂, (d) FSP-TiO₂, and (e) P25-TiO₂. All scale bars are 100 nm.

Figure S6. Low-magnification HAADF-STEM images of (a) IW-Pt(0.07)/TiO₂, (b) IW-Pt(0.14)/TiO₂, and (c) IW-Pt(0.27)/TiO₂ and high-magnification HAADF-STEM images of (d) IW-Pt(0.07)/TiO₂, (e) IW-Pt(0.14)/TiO₂, and (f) IW-Pt(0.27)/TiO₂. Scale bars for a-c are 10 nm and for d-f are 5 nm. Particle size histograms for (g) IW-Pt(0.07)/TiO₂, (h) IW-Pt(0.14)/TiO₂, and (i) IW-Pt(0.27)/TiO₂.

Figure S7. Real component of the Fourier transformed k^2 -weighted EXAFS of (a) the as-synthesized and (b) reduced FSP catalysts compared to PtO₂ and Pt foil standards, respectively.

Figure S8. DRIFTS spectra of CO adsorbed on (a) FSP-Pt/TiO₂ and (b) IW-Pt/TiO₂ with magnified insets.

Sample	Edge Energy (eV)	Coordination Number [†]	R (Å)	$\sigma^{2} (x10^{3} \text{ Å}^{2})$	$E_0 (eV)$
FSP-Pt(0.07)/TiO ₂ As-synthesized	11564.8	$3.4\pm0.4~(\text{Pt-O})$	1.99 ± 0.02	$1.7\pm0.7~\ddagger$	11.2 ± 2.4
FSP-Pt(0.07)/TiO ₂ Reduced	11562.8	$9.2\pm0.5~(\text{Pt-Pt})$	2.75 ± 0.01	5.4 ± 0.2	7.7 ± 0.4
FSP-Pt(0.14)/TiO ₂ As-synthesized	11564.4	$3.7\pm0.3~(\text{Pt-O})$	1.99 ± 0.01	1.7 ± 0.7 [‡]	9.1 ± 1.7
FSP-Pt(0.14)/TiO ₂ Reduced	11562.8	$7.7\pm0.6~(\text{Pt-Pt})$	2.74 ± 0.01	7.6 ± 0.4	7.8 ± 0.6
FSP-Pt(0.33)/TiO ₂ As-synthesized	11564.4	$3.2\pm0.2~(\text{Pt-O})$	1.99 ± 0.01	1.7 ± 0.7	9.1 ± 1.4
FSP-Pt(0.33)/TiO ₂ Reduced	11562.8	$7.7\pm0.5~(\text{Pt-Pt})$	2.75 ± 0.01	6.8 ± 0.4	7.2 ± 0.6
Pt Foil	11562.76	$12(0.86 \pm 0.03)$	2.76 ± 0.01	4.9 ± 0.2	8.0 ± 0.3
PtO ₂	11565.1	6	1 99		

Table S4. Pt L_{III} XANES energies and EXAFS fitting parameters of Pt/TiO₂ catalysts synthesized by flame

^{\dagger} The amplitude reduction factor (S₀²) was determined to be 0.86 from the metal foil. This value was fixed for fits of the samples to determine coordination numbers.

[‡] As-synthesized catalysts were assumed to contained the same species, but in different amounts. Spectra for as-synthesized materials were fit simultaneously using a single σ^2 while allowing the coordination numbers, bond lengths, and energy shifts to vary.

spray pyrolysis of as-synthesized samples and after reduction in flowing H₂ at 450 °C.

Table S5. Hydrocarbon product categories for whole biomass vapor upgrading and the corresponding compounds for each as utilized in this work.

Product Categories	Representative molecules
Alkanes	Cycloalkanes (C6-C9), isoalkanes (C5-C8), n-alkanes (C2-C10)
Alkene	Cycloalkenes (C6-C9), isoalkenes (C5-C8), n-alkenes (C2-C10)
Aromatics	1-ring aromatics (benzene, toluene, xylene, ethylbenzene, propylbenzene, methylbenzene), 2-ring aromatics (biphenyl, indane, indene, naphthalene, tetralins), 3-ring aromatics
Partially upgraded Oxygenates	2-butanone, acetone, cyclopentanones, other ketones, phenols, furan
Primary oxygenates	Furanones, methoxyphenols, acetaldehyde, other aldehydes, acids
Unknown	-

Figure S9. Carbon yield to 1-ring aromatics, phenols, and methoxyphenols as a function of biomass:catalyst ratio for (a) IW-Pt($(0.07)/TiO_2$ and (b) FSP-Pt($(0.07)/TiO_2$ catalysts.

Figure S10. Carbon yield to aromatics, partially upgraded oxygenates, and primary vapours as a function of biomass:catalyst ratio for (a) IW-Pt(0.14)/TiO₂ and (b) FSP-Pt(0.14)/TiO₂ catalysts and carbon yield to alkenes, alkanes, CO, and CO₂, as a function of biomass:catalyst ratio for (c) IW-Pt(0.14)/TiO₂ and (d) FSP-Pt(0.14)/TiO₂ catalysts.

Figure S11. Carbon yield to aromatics, partially upgraded oxygenates, and primary vapours as a function of biomass:catalyst ratio for (a) IW-Pt(0.27)/TiO₂ and (b) FSP-Pt(0.33)/TiO₂ catalysts and carbon yield to alkenes, alkanes, CO, and CO₂, as a function of biomass:catalyst ratio for (c) IW-Pt(0.27)/TiO₂ and (d) FSP-Pt(0.33)/TiO₂ catalysts.