Supplementary Information for

Impact of Medium-Pore Zeolite Topology on Para-Xylene Production from Toluene Alkylation with Methanol

Deependra Parmar¹, Seung Hyeok Cha^{1,2}, Chenfeng Huang¹, Hsu Chiang⁴, Seth Washburn⁴, Lars C. Grabow^{1,3}, and Jeffrey D. Rimer^{1,*}

¹ William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, 4226 Martin Luther King Boulevard, Houston, Texas 77204, USA

² Green Carbon Research Center, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeongro, Yuseong, Daejeon 34114, Republic of Korea

³ Texas Center for Superconductivity at the University of Houston, 3369 Cullen Blvd., Houston, TX 77204, USA

⁴ ExxonMobil Technology and Engineering, 5200 Bayway Drive, Baytown, Texas 77520, USA

*Correspondence sent to: jrimer@central.uh.edu

Table of Contents	Page
Supporting Tables	2
Supporting Figures	3
References	15

List of Tables and Figures

Table S1: Structural properties of zeolite catalysts synthesized in this study.
Table S2: Acidity determined by pyridine IR for all zeolite catalysts in this study.
Figure S1: Reference powder XRD patterns for zeolites in this study.
Figure S2: Zeolite frameworks and channel intersections for ZSM-5, TNU-9, and IM-5.
Figure S3: Early time on stream data for Figure 4 without MCM-22.
Figure S4: Light gas selectivity for medium pore zeolites as a function of feed turnover.
Figure S5: Heavy hydrocarbon (C9+) selectivity as a function of feed turnover.
Figure S6: Total xylene selectivity as a function of feed turnover.
Figure S7: Heavy hydrocarbon (C ₉ +) and light gas selectivity at 1 atm reaction conditions.
Figure S8: Total xylene selectivity as a function of feed turnover at 1 atm.
Figure S9: Time-resolved up-take profiles of toluene over ZSM-23, TNU-10, and MCM-22.
Figure S10: Time-resolved toluene up-take profiles over ZSM-11, ZSM-5, TNU-9, and IM-5
Figure S11: TGA profiles of spent catalysts ZSM-23, TNU-10, and MCM-22.
Figure S12: TGA profiles of spent catalysts ZSM-11, ZSM-5, TNU-9, and IM-5.

Supporting Tables

	n-D ^a	Channels (Å) ^b	Maximum Sphere Diam. (Å) ^c		
Catalysts			That can be included	That can diffuse	Connectivity
ZSM-23	1	4.5×5.2	6.19	5.07	Connected
MCM-22	2	$4.0 \times 5.5, 4.1 \times 5.1$	9.69	4.92	Independent
TNU-10	2	4.7×5.0	6.29	4.94	Connected
ZSM-11	3	5.4 × 5.3	7.72	5.19	Connected
ZSM-5	3	$5.1 \times 5.5, 5.3 \times 5.6$	6.36	4.7	Connected
TNU-9	3	5.5 × 5.6, 5.4 × 5.5	8.46	5.39	Connected
IM-5	3	5.5 × 5.6, 5.3 × 5.4, 5.3 × 5.9, 4.8 × 5.4, 5.1 × 5.3	7.34	5.44	Connected

Table S1. Structural properties of zeolite catalysts synthesized in this study.

^an-D = n-dimensional channels; Diam. = diameter. ^b channel dimensions. ^c Maximum sphere diameter that can fit in pores. All data was obtained from the International Zeolite Association structure database.¹

Catalyst	Acidity (pyridine µmol/g)			
Catalyst	Total	Brønsted	Lewis	
ZSM-23	129	112	17	
TNU-10	295	239	56	
MCM-22	310	186	124	
ZSM-11	384	342	42	
ZSM-5	319	253	67	
TNU-9	526	421	105	
IM-5	321	241	80	

Table S2. Acidity determined by pyridine IR for all catalysts studied.

Supporting Figures

Figure S1. Reference X-ray diffraction (XRD) patterns (obtained from IZA database)¹ for zeolites synthesized in this study. ZSM-5 was the only zeolite purchased from a commercial vendor. These XRD patterns are included for comparative purposes with the experimental XRD patterns of as-synthesized zeolites reported in Figure 1A.

Figure S2. Zeolite frameworks and channel intersections for (A) ZSM-5, (B) TNU-9, and (C) IM-5. Average pore dimensions are labeled in each scheme.

Figure S3. Early time on stream data for trends in Figure 4 of the manuscript, plotted without MCM-22 for improved clarity. (A) Methanol conversion and (B) p-xylene selectivity as a function of feed turnover over medium pore zeolites for toluene alkylation of methanol at 350 °C, 41 atm, toluene-to-methanol ratio of 3, and 30 h^{-1} WHSV.

Figure S4. Light gas selectivity for medium pore zeolites as a function of feed turnover for toluene alkylation of methanol at 350 °C, 41 atm, toluene-to-methanol ratio of 3, and 30 h^{-1} WHSV. The values for MCM-22 equal zero for all feed turnover and are omitted for clarity.

Figure S5. Heavy hydrocarbon (C₉₊) selectivity for (A) MCM-22 and (B) other medium pore zeolites as a function of feed turnover for toluene alkylation of methanol at 350 °C, 41 atm, toluene-to-methanol ratio of 3, and 30 h⁻¹ WHSV. Dashed lines are interpolations to guide the eye.

Figure S6. Total xylene selectivity for (A) MCM-22 and (B) other medium pore zeolites as a function of feed turnover for toluene alkylation of methanol at 350 °C, 41 atm, toluene-to-methanol ratio of 3, and 30 h^{-1} WHSV.

Figure S7. (A) Heavy hydrocarbon (C₉+) and (B) Light gas selectivity as a function of feed turnover over medium pore zeolites for toluene alkylation of methanol at 350 °C, 1 atm, toluene-to-methanol ratio of 3, and 30 h^{-1} WHSV.

Figure S8. Total xylene selectivity as a function of feed turnover over medium pore zeolites for toluene alkylation of methanol at 350 °C, 1 atm, toluene-to-methanol ratio of 3, and 30 h^{-1} WHSV.

Figure S9. Time-resolved up-take profiles of toluene over pelletized zeolites samples of (A) ZSM-23, (B) TNU-10, and (C) MCM-22, to calculate the mass transport parameter D/R^2 where *D* is the effective diffusivity and *R* is a characteristic dimension of the particles in each sample.

Figure S10. Time-resolved up-take profiles of toluene over pelletized zeolites samples of (A) ZSM-11, (B) ZSM-5, (C) TNU-9, and (D) IM-5, to calculate the mass transport parameter D/R^2 where D is the effective diffusivity and R is a characteristic dimension of the particles in each sample.

Figure S11. Thermo-gravimetric analysis (TGA) profiles of spent catalysts of (A) ZSM-23, (B) TNU-10, and (C) MCM-22 after the toluene alkylation of methanol at 350 °C, 41 atm, toluene-to-methanol ratio of 3, and 30 h^{-1} WHSV. Weight loss in the region 0 to 200 °C is attributed to water, while weight loss in the region 200 to 700 °C is due to coke removal.

Figure S12. Thermo-gravimetric analysis (TGA) profiles of spent catalysts of (A) ZSM-11, (B) ZSM-5, (C) TNU-9, and (D) IM-5 after the toluene alkylation of methanol at 350 °C, 41 atm, toluene-to-methanol ratio of 3, and 30 h^{-1} WHSV. Weight loss in the region 0 to 200 °C is attributed to water, while weight loss in the region 200 to 700 °C is due to coke removal.

References

1 Ch, B. & McCusker, L. Database of Zeolite Structures. *http://www. iza-structure. org/databases* (2015).