Mg-doped SrTiO₃ Photocatalyst with Ag–Co Cocatalyst for Enhanced Selective Conversion of CO₂ to CO Using H₂O as the Electron Donor

Takechi NAKAMOTO[†], Shoji IGUCHI^{†, *}, Shimpei NANIWA[†], Tsunehiro TANAKA^{†, ‡}, and Kentaro TERAMURA^{†, ‡,#,*}

[†] Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto-daigaku Katsura, Nishikyo-ku, Kyoto 615–8510, Japan

[‡] Elements Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto University, 1-30

Goryo-Ohara, Nishikyo-ku, Kyoto 615-8245, Japan

[#] Fukui Institute for Fundamental Chemistry, Kyoto University, Takano Nishibiraki-cho34-4, Sakyo-ku, Kyoto 606-8103, Japan

Corresponding Authors

Shoji IGUCHI: iguchi.shoji.4k@kyoto-u.ac.jp

Kentaro TERAMURA: teramura.kentaro.7r@kyoto-u.ac.jp

Keywords: CO₂ photoreduction, Perovskite oxides, Mg²⁺-doping, Edges-shaved cubes

Figure S1. (A) XRD patterns and (B) UV-Vis DRS of (a) Al–SrTiO₃, (b) Zn–SrTiO₃, (c)

Li-SrTiO₃, (d) Mn-SrTiO₃, (e) W-SrTiO₃, (f) Ca-SrTiO₃, (g) Y-SrTiO₃, and (h) Mg-SrTiO₃.

Figure S2. Formation rate of CO (red), H₂ (blue), and O₂ (green), and the selectivity toward CO evolution (black diamond) in the photocatalytic conversion of CO₂ by H₂O over the Ag–Co/Mg–ATiO₃ photocatalysts (A = Ba, Ca, and Sr). Reaction conditions: Amount of photocatalyst: 0.2 g; Ag loading: 1 wt%; Co loading: 0.3 wt%; volume of reaction solution (H₂O): 0.2 L; additive: 0.1 M NaHCO₃; CO₂ flow rate: 30 mL min⁻¹; light source: monochromatic LED lamp at 365 nm; photoirradiation time: 1 h.

Figure S3. Mg 2p XPS spectra of (a) Mg–SrTiO₃ obtained at various Ar sputtering

times, (b) Mg(OH)₂, and (c) MgO.

Figure S4. Ag K-edge X-ray absorption near edge structure (XANES) spectra of (a) AgO,

(b) Ag₂O, (c) Ag foil, and (d) Ag-Co/Mg-SrTiO₃.

Figure S5. Transmission electron microscope (TEM) images of (a) Ag and Co-loaded

Mg-SrTiO₃, (b) Ag-loaded Mg-SrTiO₃, and (c) Co-loaded Mg-SrTiO₃ by PD method.

Figure S6. Formation rate of CO (red), H₂ (blue), and O₂ (green), and the selectivity toward CO evolution (black diamond) in the photocatalytic conversion of CO₂ by H₂O over the Mg–SrTiO₃ photocatalysts in the presence of Ag–Co cocatalyst loaded by photodeposition (PD), impregnation (IMP), and chemical reduction (CR) method. Reaction conditions: Amount of photocatalyst: 0.2 g; Ag loading: 1 wt%; Co loading: 0.3 wt%; volume of reaction solution (H₂O): 0.2 L; additive: 0.1 M NaHCO₃; CO₂ flow rate: 30 mL min⁻¹; light source: monochromatic LED lamp at 365 nm; photoirradiation time: 1 h.

Figure S7. Particle diameter distributions of Ag loaded by (A) PD, (B) IMP, and (C) CR

method on the surface of Mg-SrTiO₃.

Figure S8. Formation rate of CO (red), H₂ (blue), and O₂ (green), and the selectivity toward CO evolution (black diamond) in the photocatalytic conversion of CO₂ by H₂O over the Ag–Co/MgO/SrTiO₃, Ag–Co/MgO/Al–SrTiO₃, Ag–Co/Al–SrTiO₃ and Ag–Co/Mg–SrTiO₃ photocatalysts. Reaction conditions: Amount of photocatalyst: 0.2 g; Ag loading: 1 wt%; Co loading: 0.3 wt%; volume of reaction solution (H₂O): 0.2 L; additive: 0.1 M NaHCO₃; CO₂ flow rate: 30 mL min⁻¹; light source: monochromatic LED lamp at 365 nm; photoirradiation time: 1 h.

Figure S9. SEM image of Mg–SrTiO₃_1118 K.

Figure S10. (A-1) XRD patterns of (a) pristine $SrTiO_3$, (b) Mg- $SrTiO_3_1$ h, (c) Mg- $SrTiO_3_10$ h, (d) Mg- $SrTiO_3_15$ h, and (e) Mg- $SrTiO_3_20$ h. (A-2) is the magnified view of (a)–(e) in (A-1). (B) Dependence of calcination time on the peak top position of

(220) phase.

Figure S11. (A) Formation rate of CO (red), H₂ (blue), and O₂ (green), and the selectivity toward CO evolution (black diamond) in the photocatalytic conversion of CO₂ by H₂O over the Ag–Co/Mg–SrTiO₃ $_y$ h photocatalysts (y = 1, 10, 15, and 20). Reaction conditions: Amount of photocatalyst: 0.2 g; Ag loading: 1 wt%; Co loading: 0.3 wt%; volume of reaction solution (H₂O): 0.2 L; additive: 0.1 M NaHCO₃; CO₂ flow rate: 30 mL min⁻¹; light source: monochromatic LED lamp at 365 nm; photoirradiation time: 1 h. (B) Dependence of peak top position on formation rate of CO.

Figure S12. XRD patterns of (a) pristine SrTiO₃, (b) Mg(0)–SrTiO₃, (c) Mg(2)–SrTiO₃,

(d) Mg(4)–SrTiO₃, (e) Mg(8)–SrTiO₃, (f) Mg(24)–SrTiO₃, and (g) Mg(100)–SrTiO₃ (\checkmark

 Y_2O_3 , • MgO).

Table S1. Actual contents of Mg, Ti, and Sr in the Mg–SrTiO₃, Mg–SrTiO₃_1268 K, and Mg(2)–SrTiO₃ using ICP measurements, which show characteristic photocatalytic activities as presented in the main text

Samples	Formation rate of CO / µmol h ^{−1}	Atomic content	
		Theoretical	Experimental
Mg-SrTiO ₃	20	SrTi _{0.96} Mg _{0.04} O ₃	SrTi _{0.88} Mg _{0.029} O _{2.8}
Mg-SrTiO ₃ 1268K	15	SrTi _{0.96} Mg _{0.04} O ₃	SrTi _{1.0} Mg _{0.025} O ₃
Mg(2)-SrTiO ₃	10	SrTi _{0.98} Mg _{0.02} O ₃	SrTi _{0.85} Mg _{0.017} O _{2.7}

Figure S13. Formation rates of CO (red), H₂ (blue), and O₂ (green), and the selectivity toward CO evolution (black diamond) in the photocatalytic conversion of CO₂ by H₂O over the Ag–Co/Mg–SrTiO₃ photocatalyst. (a) without photocatalyst (b) without additive (c) without photoirradiation (d) typical condition. Reaction conditions: Amount of photocatalyst: 0.2 g; Ag loading: 1 wt%; Co loading: 0.3 wt%; volume of reaction solution (H₂O): 0.2 L; additive: 0.1 M NaHCO₃; CO₂ flow rate: 30 mL min⁻¹; light source: monochromatic LED lamp at 365 nm; photoirradiation time: 5 h.

Figure S14. Formation rate of CO (red), H₂ (blue), and O₂ (green), and the selectivity toward CO evolution (black diamond) in the photocatalytic conversion of CO₂ by H₂O over the Ag–Co/Mg–SrTiO₃ photocatalyst. Reaction conditions: Amount of photocatalyst: 0.2 g; Ag loading: 1 wt%; Co loading: 0.3 wt%; volume of reaction solution (H₂O): 0.2 L; additive: 0.1 M NaHCO₃; CO₂ flow rate: 30 mL min⁻¹; light source: monochromatic LED lamp at 365 nm; photoirradiation time: 15 h.

Figure S15. Dependency of average particle diameter of Ag cocatalyst on

photoirradiation time.

Scheme S1. The scheme of the external-irradiation-type reaction vessel with the 365 nm monochromatic LED lamp

The calculation of the apparent quantum efficiency (AQE)

AQE (%) =
$$\frac{\text{number of reacted electrons}}{\text{number of incident photons}} \times 100$$

Number of reacted electrons

= $2 \times$ total amount of substance of the photogenerated CO and H₂ during 1 h reaction

$$= 2 \times (20 + 0.057) \times 10^{-6} \times N_A$$

Where N_A is the Avogadro constant of $6.0 \times 10^{23} \text{ mol}^{-1}$.

Number of incident photons

= totally given light energy to photocatalyst for 1 h / energy per photon at 365 nm

 $= W \times S \times 3600 / h \times c / (365 \times 10^{-9})$

Where *W*, *S*, *h* and *c* is the detected power of 400 mW cm⁻², the photo-irradiated area on reaction vessel of 20 cm⁻², Planck constant of 6.6×10^{-34} J s and speed of light of 3.0×10^{8} .

Therefore, number of incident photons

 $=400 \times 10^{-3} \times 20 \times 3600 / (6.6 \times 10^{-34} \times 3.0 \times 10^8) / (365 \times 10^{-9}) = 5.3 \times 10^{22}$

From the above, AQE (%) = 2 × (20 + 0.057) × 10^{-6} × 6.0 × 10^{23} / (5.3 × 10^{22}) × 100 =

0.045 %