Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2023

SUPPLEMENTARY INFORMATION

Platinum nanoparticles on 3D graphene-like zeolite-templated carbon for benzene hydrogenation

Somayeh F. Rastegar¹, Radim Pilar¹, Jaroslava Moravkova¹, Galina Sadovska^{1,2}, Vasile I. Parvulescu³, Jana Pastvova¹, Jan Plsek¹, Dalibor Kaucky¹, Nikola Kostkova^{1,2}, Petr Sazama^{1*}

¹J. Heyrovsky Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejskova 2155/3, 182 23 Prague, Czech Republic, ^{*}Corresponding author: petr.sazama@jh-inst.cas.cz

²Faculty of Chemical Technology, University of Pardubice, Doubravice 41, 53210, Pardubice, Czech Republic

> ³University of Bucharest, Department of Organic Chemistry and Catalysis, B-dul Regina Elisabeta 4-12, 030016 Bucharest, Romania

Figure S1. The reproducibility of catalytic measurements of hydrogenation of benzene to cyclohexane.

Figure S2. Characterization of catalyst supports used for the preparation of comparative Pt/catalysts. A) XRD analysis and B) N_2 adsorption at 77 K.

Table S1.Textural properties of alumina, silica and activated carbon supports used for the
preparation of comparative Pt/catalysts obtained from N_2 adsorption/desorption at 77
K.

	V _{micro} cm ³ g ⁻¹	V _{meso} cm ³ g ⁻¹	V _{tot} cm ³ g ⁻¹	S _{tot} m ² g ⁻¹
AC	0.44	0.43	0.87	1031
Al ₂ O ₃	0.04	0.30	0.34	153
SiO2	0.04	0.11	0.15	161

- Figure S3. XRD analysis of 3Pt/catalysts with characteristic lines of metal platinum.
- **Table S2.** Repeated use of Pt/Y-carbon catalysts in the hydrogenation of benzene carried out in a pressure batch reactor at a temperature of 100 °C and a pressure of 10 bar with *n*-heptane as a solvent. The catalysts were reused without any treatment or activation between catalytic runs.

Catalyst	Catalyst productivity at 180 min mol g _{cat} ⁻¹ s ⁻¹				
	1 st Run, fresh catalysts	2 nd Run, used catalyst	3 rd Run, used catalyst		
8.6Pt/Y-carbon(H ₂)	1.87.10-4	1.92.10-4	1.01.10-4		
24.7Pt/Y-	1.42·10 ⁻³	1.36·10 ⁻³	1.11·10 ⁻³		
carbon(N ₂)					

Figure S4. Catalyst productivity in the hydrogenation of benzene at a temperature of 100 °C and a pressure of 10 bar with *n*-heptane as a solvent for fresh and repeatedly used catalyst.

Figure S5. HR-TEM analysis of 8.6Pt/*Y*-carbon(H₂) A) before and B) after three subsequent catalytic tests in the hydrogenation of benzene.

Figure S6. Comparison of benzene to cyclohexane conversions in the benzene hydrogenation for 8.6Pt/Y-carbon(N₂) and a commercial 10Pt/AC catalyst (Aldrich, PN 205958, Lot. MKCM3796) with 10 wt.% Pt deposited on activated carbon.

Catalyst	Catalyst productivity mol g _{cat} -1 s ⁻¹	Conditions of the catalytic test	Ref.
24.7Pt/Y-carbon(N ₂)	10.6·10 ⁻⁴	batch/(l); 100 °C; 10 bar	This study
8.6Pt/Y-carbon(N ₂)	4.8·10 ⁻⁴	batch/(l); 100 °C; 10 bar	, This study
3Pt/Y-carbon(N ₂)	1.4.10-4	batch/(l); 100 °C; 10 bar	This study
10Pt/AC(Aldrich)	1.6.10-4	batch/(I); 100 °C; 10 bar	This study
10Pt/Al ₂ O ₃	3.72·10 ⁻⁵	flow/(g); 80 °C; H ₂ /B=5; 1 ml/s	1
0.34Pt/Al ₂ O ₃	1.24·10 ⁻⁵	flow/(g); 80 °C H ₂ /B=692/68 Torr	2
1.91Pt/SiO ₂	2.15·10 ⁻⁵	flow/(g); 80 °C H ₂ /B=692/68 Torr	2
0.5Pt/MOR	6.11·10 ⁻⁷	flow/(g); 80 °C; H ₂ /B=9; 1 bar; WHSV=8.8 h ⁻¹	3
0.5Pt/USY	6.67·10 ⁻⁶	flow/(g); 80 °C; H ₂ /B=9; 1 bar; WHSV=8.8 h ⁻¹	3
11Pt/SWCNT	6.33·10 ⁻⁵	batch/(l); 20 °C; 22.5 mmol of benzene; 10 bar	4
10Pt/AC	1.38·10 ⁻⁵	batch/(l); 20 °C; 22.5 mmol of benzene; 10 bar	4
0.96Pt/SiO ₂	3.80·10 ⁻⁶	flow/(g); 60°C; H₂/B=1.01 bar/0.05 bar	5
0.78Pt/Al ₂ O ₃	1.43·10 ⁻⁶	flow/(g); 60°C; H ₂ /B=1.01 bar/0.05 bar	5
0.95Pt/TiO ₂	4.97·10 ⁻⁶	flow/(g); 60°C; H ₂ /B=1.01 bar/0.05 bar	5

Table S3.Comparison of the productivity of Pt/Y-carbon(N2) catalysts with reported Pt-
catalysts for benzene hydrogenation.

SWCNT - single-walled carbon nanotubes AC – activated carbon

Figure S7. Comparison of the catalytic activity of 8.6Pt/*Y*-carbon(H₂) in the hydrogenation of benzene and ethylbenzene under identical conditions (10 bar H₂, 100 °C, 10 mg catalyst).

References

- 1. J. Lee, E. J. Jang and J. H. Kwak, *Appl Catal a-Gen*, 2019, **569**, 8-19.
- 2. A. F. Flores, R. L. Burwell and J. B. Butt, J. Chem. Soc.-Faraday Trans., 1992, 88, 1191-1196.
- 3. V. Fouche, P. Magnoux and M. Guisnet, *Appl Catal*, 1990, **58**, 189-198.
- 4. Y. J. Liao, H. B. Pan and C. M. Wai, *J Nanosci Nanotechno*, 2011, **11**, 8580-8585.
- 5. S. D. Lin and M. A. Vannice, *J Catal*, 1993, **143**, 539-553.