Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2023

Electronic Supporting Information (ESI)

Fabricating penta-coordinated Fe single atom for electrochemical CO₂ reduction to syngas

Linjie Wang,‡^a Xiaofei Lai,‡^b Yafeng Xu,‡^c Shaojuan Luo,*^{a,d,e} Lu Wang,*^c Kai Yan,^d Da Zhang, ^a Sitong Feng^a and Yong Xu*^b

^aSchool of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.

^bGuangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Collaborative Innovation Center of Advanced Energy Materials, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China.

^cInstitute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China.

^dGuangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-Sen University, Guangzhou 510006, China.

^eJieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Rongjiang Laboratory, Jieyang, 515200, China.

*Corresponding author kesjluo@gdut.edu.cn, lwang22@suda.edu.cn, yongxu@gdut.edu.cn

Computational methods

DFT calculations were performed by the Vienna ab initio simulation package (VASP).^{1, 2} The ion-electron interaction was described by the projector augmented wave (PAW) method,³ while the generalized gradient approach (GGA) of the Perdew-Burke-Ernzerhof (PBE) functional^{4, 5} was employed to account for the electron-electron exchange correlation. Furthermore, the van der Waals interaction was also considered in this study by using DFT-D₃ correction.⁶ The cutoff energy for the plane wave basis sets was defined as 500 eV. The geometry optimization was converged if the maximum force on each atom reached 0.03 eV Å⁻¹. For Fe–N₃/C and Fe NP/NC structures, a 6×6 supercell of graphene was constructed by missing two adjacent C atoms, and four C atoms in the defective site were replaced by four N atoms. The structures were relaxed using a k-point mesh of $3\times3\times1$ generated by Gamma centered grid. A vacuum space of 15 Å was introduced to avoid the interaction between periodic images. The Gibbs free energy changes (Δ G) were calculated by the following formula (Table S4).⁷

$$\Delta G = \Delta E + \Delta Z P E - T \Delta S$$

where ΔE describes the adsorption energy, ΔZPE and ΔS are the correction of zero-point energy and entropy for the adsorbed intermediates, *T* is the temperature (298.15 K).

Figure S1. SEM images of (a, b) ZTF, (c, d) NC, and (e, f) Fe–N₅/C.

Figure S2. (a) N_2 adsorption-desorption isotherms of ZIF, NC, Fe– N_5/C , and Fe NP/NC; (b) pore structures of ZIF, NC, Fe– N_5/C , and Fe NP/NC.

Figure S3. XRD pattern of ZTF.

Figure S4. High-resolution XPS spectrum of the Fe 2p of Fe–N₅/C.

Figure S5. FT-IR spectra of NC and Fe– N_5/C .

Figure S6. Representative spectra of (a) flame ionization detector (FID) and (b) thermal conductivity discharge detector (TCD) taken for the Fe-N₅/C at -0.7 V.

Figure S7. ¹H NMR spectrum of the liquid product obtained over Fe–N₅/C after 1 h CO₂ reduction at -0.7 V.

Figure S8. Faradic efficiencies of H_2 for the Fe-N₅/C at various applied potentials.

Figure S9. EIS Nyquist plots of NC, Fe–N₅/C, and Fe NP/NC.

Figure S10. Cyclic voltammograms of (a) NC, (b) Fe–N₅/C, and (c) Fe NP/NC at different scan rates (20, 40, 60, 80, and 100 mV·s⁻¹). (d) Double layer capacitive currents plotted against scan rates performed in CO₂-saturated 1.0 M KOH solution.

Figure S11. (a, b) SEM and (c, d) TEM images of the used Fe–N₅/C.

Figure S12. XRD pattern of Fe–N₅/C after 12 h electrolysis.

Figure S13. N 1s XPS spectra of Fe–N₅/C after 12 h electrolysis.

Table S1. BET analysis results of samples.

Catalysts	$S_{BET} (m^{2}/g)^{a}$	V _{meso} (cm ³ /g) ^b	V _{micro} (cm ³ /g) ^c
ZTF	288.2	~	0.145
NC	200.8	0.457	0.056
Fe–N ₅ /C	235.1	0.464	0.058
Fe NP/NC	226.0	0.391	0.048

^a: S_{BET} is BET specific surface area.

^b: V_{meso} is the specific mesopore volume calculated from desorption isotherm by the BJH method.

^c: V_{micro} is the specific micropore volume calculated by the *t*-plot method.

Scattering Paths	CN ^[a]	R (Å) ^[b]	$\sigma^2 (10^{-3} \text{\AA}^2)^{[c]}$	$\Delta E_o (eV)^{[d]}$
Fe–N	5.15 ± 1.21	1.98 ± 0.1	7.00 ± 0.01	-6.51 ± 6.06

Table S2. EXAFS fitting results of Fe– N_5/C .

^a: Coordination number.

^b: Interatomic distance.

^c: Debye-Waller factor.

^d: Energy deviation.

Catalysts	Electrolyte	maximum FE _{CO} (%)	$J_{CO} (mA \; cm^{-2})$	H ₂ /CO	Reference
Fe-N ₅ /C	0.1 M KHCO ₃	67.8	3.8	0.15/1~2.8/1	This work
Pd/C	0.5 M NaHCO ₃	40	1	2/1~1/1	8
Pd/TaC	0.5 M NaHCO ₃	45	0.5	6/1~1/1	9
Pd/NMs	0.5 M KOH	48	2.5	2/1~1/1	10
Ag NCs	0.1 M KHCO ₃	55	2	2/1~1/1	11
Cu nanowire arrays	0.1 M KHCO ₃	40	2	3/1~1/2	12
Cu _{ZIF} -T	~	40	2	3/1~1/2	13
N-doped carbon	0.1 M KHCO ₃	65	2	3/1~1/2	14
CuInO/C	0.1 M KHCO ₃	42	~	~0.83	15
Pd/NbN	0.5 M NaHCO ₃	38.4	0.4	1.35/1~6.25/1	16
CuO-400	0.1 M KHCO ₃	48.2	1.4	1/1~2/1	17
Pd@CuO-2	0.5 M NaHCO ₃	58.3	2.2	0.44/1~0.72/1	18
Co@CoNC-900	0.1 M KHCO ₃	42	3.2	1/1~1.5/1	19
Col-Au	0.5 M KHCO ₃	35	1	1.8/1~2.2/1	20
F-Cu ₂ O	0.1 M KHCO ₃	53.2	0.9	0.5/1~1/1	21
Bulk In	0.1 M KHCO ₃	38	0.2	0.2/1~1/1	22
Cu/In ₂ O ₃ NPs/C-H ₂	0.1 M KHCO ₃	31.1	2.1	1.6/1~2/1	23

Table S3. Comparison between Fe–N₅/C and other reported catalysts for CO_2RR .

Table S4. Free energies of molecule species.^a

Species	E(eV)	ZPE (eV)	TS (eV)
$H_{2}(g)$	-6.77	0.27	0.41
$H_2O(l)$	-14.22	0.56	0.67
CO (g)	-15.28	0.14	0.61
$CO_{2}(g)$	-22.96	0.31	0.66

^a: A -0.51 eV correction to energy of CO (g) is included due to the use of PBE functional.

References

- 1. G. Kresse and J. Furthmüller, Comput. Mater. Sci., 1996, 6, 15-50.
- 2. G. Kresse and J. Furthmüller, *Phys. Rev. B*, 1996, **54**, 11169-11186.
- 3. P. E. Blöchl, Phys. Rev. B, 1994, 50, 17953-17979.
- 4. J. P. Perdew, M. Ernzerhof and K. Burke, J. Chem. Phys., 1996, 105, 9982-9985.
- 5. J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865-3868.
- 6. S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys., 2010, 132, 154104-154122.
- 7. J. K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. R. Kitchin, T. Bligaard and H. Jonsson, *The Journal of Physical Chemistry B*, 2004, **108**, 17886-17892.
- W. Sheng, S. Kattel, S. Yao, B. Yan, Z. Liang, C. J. Hawxhurst, Q. Wu and J. G. Chen, *Energy Environ. Sci.*, 2017, 10, 1180-1185.
- J. Wang, S. Kattel, C. J. Hawxhurst, J. H. Lee, B. M. Tackett, K. Chang, N. Rui, C. J. Liu and J. G. Chen, *Angew. Chem. Int. Ed.*, 2019, 58, 6271-6275.
- J. Wu, Y. Xie, Z. Ren, S. Du, H. Meng, L. Zhao, X. Wang, G. Wang and H. Fu, ChemSusChem, 2019, 12, 3304-3311.
- 11. X. Han, L. Liu, J. Yuan, X. Zhang and D. Niu, ChemSusChem, 2021, 14, 721-729.
- R. Daiyan, R. Chen, P. Kumar, N. M. Bedford, J. Qu, J. M. Cairney, X. Lu and R. Amal, ACS Appl. Mater. Interfaces, 2020, 12, 9307-9315.
- S. Cui, C. Yu, X. Tan, H. Huang, X. Yao and J. Qiu, ACS Sustain. Chem. Eng., 2020, 8, 3328-3335.
- H. Li, N. Xiao, Y. Wang, C. Li, X. Ye, Z. Guo, X. Pan, C. Liu, J. Bai and J. Xiao, *J. Mater. Chem. A*, 2019, 7, 18852-18860.
- 15. C. Shen, P. Wang, L. Li, X. Huang and Q. Shao, Nano Res., 2022, 15, 528-534.
- Y. Liu, D. Tian, A. N. Biswas, Z. Xie, S. Hwang, J. H. Lee, H. Meng and J. G. Chen, *Angew. Chem. Int. Ed.*, 2020, **59**, 11345-11348.
- X. Yao, Y. Guo, B. Liu, P. Wang, J. Sun, W. Li and C. Zhao, *ChemElectroChem*, 2021, 8, 592-602.
- R. Cai, X. Du, G. Liu, X. Wang, Q. Tang, X. Pan, F. Li and J. Li, *Fuel*, 2023, **338**, 127346-127353.

- 19. Y. Wang, C. Niu, Y. Zhu, D. He and W. Huang, ACS Appl. Energ. Mater., 2020, 3, 9841-9847.
- 20. L. Mascaretti, A. Niorettini, B. R. Bricchi, M. Ghidelli, A. Naldoni, S. Caramori, A. Li Bassi and S. Berardi, *ACS Appl. Energ. Mater.*, 2020, **3**, 4658-4668.
- 21. H. Luo, B. Li, J. G. Ma and P. Cheng, Angew. Chem. Int. Ed., 2022, 134, e202116736.
- S. A. Mahyoub, F. A. Qaraah, S. Yan, A. Hezam, C. Chen, J. Zhong and Z. Cheng, J. CO2 Util., 2022, 61, 102033-102044.
- J. Shen, L. Wang, X. He, S. Wang, J. Chen, J. Wang and H. Jin, *ChemSusChem*, 2022, 15, e202201350.