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Scheme S1: C^N ligands a-d in the [Ru(C^N)(η2-OAc)(dppb)] complexes. 

 

 

 

Figure S1. 31P{1H} NMR spectrum (162.0 MHz) of [Ru(a)(η2-OAc)(dppb)] (1) in CD2Cl2 at 25 °C. 
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Figure S2. 1H NMR spectrum (400.1 MHz) of [Ru(a)(η2-OAc)(dppb)] (1) in CD2Cl2 at 25 °C. 
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Figure S3. 13C{1H} DEPTQ NMR spectrum (100.6 MHz) of [Ru(a)(η2-OAc)(dppb)] (1) in CD2Cl2 at 

25 °C. 
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Figure S4. 1H-1H COSY 2D NMR spectrum of [Ru(a)(η2-OAc)(dppb)] (1) in CD2Cl2 at 25 °C. 
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Figure S5. 1H-1H NOESY 2D NMR spectrum of [Ru(a)(η2-OAc)(dppb)] (1) in CD2Cl2 at 25 °C. 
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Figure S6. 1H-31P HMBC 2D NMR spectrum of [Ru(a)(η2-OAc)(dppb)] (1) in CD2Cl2 at 25 °C. 
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Figure S7. 1H-13C HMBC 2D NMR spectrum of [Ru(a)(η2-OAc)(dppb)] (1) in CD2Cl2 at 25 °C. 
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Figure S8. 1H-13C HSQC 2D NMR spectrum of [Ru(a)(η2-OAc)(dppb)] (1) in CD2Cl2 at 25 °C.
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Figure S9. 31P{1H} NMR spectrum (162.0 MHz) of [Ru(b)(η2-OAc)(dppb)] (2) in toluene-d8
 at 25 °C. 



S16  

 

 

Figure S10. 1H NMR spectrum (400.1 MHz) of [Ru(b)(η2-OAc)(dppb)] (2) in toluene-d8 at 25 °C. 
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Figure S11. 13C{1H} DEPTQ NMR spectrum (100.6 MHz) of [Ru(b)(η2-OAc)(dppb)] (2) in toluene-

d8
 at 25 °C. 
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Figure S12. 1H-1H COSY 2D NMR spectrum of [Ru(b)(η2-OAc)(dppb)] (2) in toluene-d8
 at 25 °C. 
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Figure S13. 1H-1H NOESY 2D NMR spectrum of [Ru(b)(η2-OAc)(dppb)] (2) in toluene-d8
 at 25 °C. 
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Figure S14. 1H-31P HMBC 2D NMR spectrum of [Ru(b)(η2-OAc)(dppb)] (2) in CD2Cl2 at 25 °C. 
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Figure S15. 1H-13H HSQC 2D NMR spectrum of [Ru(b)(η2-OAc)(dppb)] (2) in CD2Cl2 at 25 °C. 
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Figure S16. 31P{1H} NMR spectrum (162.0 MHz) of [Ru(c)(η2-OAc)(dppb)] (3) in CD2Cl2 at 25 °C. 
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Figure S17. 1H NMR spectrum (400.1 MHz) of [Ru(c)(η2-OAc)(dppb)] (3) in CD2Cl2 at 25 °C. 
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Figure S18. 13C{1H} DEPTQ NMR spectrum (100.6 MHz) of [Ru(c)(η2-OAc)(dppb)] (3) in CD2Cl2 

at 25 °C. 
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Figure S19. 1H-1H COSY 2D NMR spectrum of [Ru(c)(η2-OAc)(dppb)] (3) in CD2Cl2 at 25 °C. 
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Figure S20. 1H-1H NOESY 2D NMR spectrum of [Ru(c)(η2-OAc)(dppb)] (3)) in CD2Cl2 at 25 °C. 
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Figure S21. 1H-31P HMBC 2D NMR spectrum of [Ru(c)(η2-OAc)(dppb)] (3) in CD2Cl2 at 25 °C. 
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Figure S22. 1H-13C HMBC 2D NMR spectrum of [Ru(c)(η2-OAc)(dppb)] (3) in CD2Cl2 at 25 °C. 
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Figure S23. 1H-13C HSQC 2D NMR spectrum of [Ru(c)(η2-OAc)(dppb)] (3) in CD2Cl2 at 25 °C. 
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Figure S24. 31P{1H} NMR spectrum (162.0 MHz) of [Ru(d)(η2-OAc)(dppb)] (4) in CD2Cl2 at 25 

°C. 
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Figure S25. 1H NMR spectrum (400.1 MHz) of [Ru(d)(η2-OAc)(dppb)] (4) in CD2Cl2 at 25 °C. 
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Figure S26. 13C{1H} DEPTQ NMR spectrum (100.6 MHz) of [Ru(d)(η2-OAc)(dppb)] (4) in CD2Cl2 

at 25 °C. 
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Figure S27. 1H-1H COSY 2D NMR spectrum of [Ru(d)(η2-OAc)(dppb)] (4) in CD2Cl2 at 25 °C. 
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Figure S28. 1H-1H NOESY 2D NMR spectrum of [Ru(d)(η2-OAc)(dppb)] (4) in CD2Cl2 at 25 °C. 
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Figure S29. 1H-31P HMBC 2D NMR spectrum of [Ru(d)(η2-OAc)(dppb)] (4) in CD2Cl2 at 25 °C. 
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Figure S30. 1H-13C HMBC 2D NMR spectrum of [Ru(d)(η2-OAc)(dppb)] (4) in CD2Cl2 at 25 °C. 
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Figure S31. 1H-13C HSQC 2D NMR spectrum of [Ru(d)(η2-OAc)(dppb)] (4) in CD2Cl2 at 25 °C. 
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Figure S32. 31P{1H} NMR spectrum (162.0 MHz) of [Ru(b)(η2-HCOO)(dppb)] (5) in  CD2Cl2 at 25 

°C. 
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Figure S33. 1H NMR spectrum (400.1 MHz) of [Ru(b)(η2-HCOO)(dppb)] (5) in CD2Cl2 at 25 °C. 
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Figure S34. 13C{1H} DEPTQ NMR spectrum (100.6 MHz) of [Ru(b)(η2-HCOO)(dppb)] (5) in CD2Cl2 

at 25 °C.  
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Figure S35. 1H-1H COSY 2D NMR spectrum of [Ru(b)(η2-HCOO)(dppb)] (4) in CD2Cl2 at 25 °C. 



S42  

 

 

Figure S36. 1H-31P HMBC 2D NMR spectrum of [Ru(b)(η2-HCOO)(dppb)] (5) in CD2Cl2 at 25 °C. 
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Figure S37. 1H-13C HMBC 2D NMR spectrum of [Ru(b)(η2-HCOO)(dppb)] (5) in CD2Cl2 at 25 °C.
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Figure S38. 1H-13C HSQC 2D NMR spectrum of [Ru(b)(η2-HCOO)(dppb)] (5) in CD2Cl2 at 25 °C.
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Figure S39. Evidence of H2 formation from the decomposition of HCOOH promoted by [Ru(b)(η
2-

OAc)(dppb)] (2) in the 1H NMR spectra (400.1 MHz) in toluene-d8. 
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Figure S40. Evidence of formation of ruthenium monohydride species after treatment of [Ru(d)(η2-

OAc)(dppb)] (4) with NaOiPr (2 equiv) at reflux in the 1H NMR spectrum (400.1 MHz) in iPrOH/toluene-

d8 (4:1 (v/v)). 
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Figure S41. GC-FID chromatogram of the reaction mixture of the catalytic TH of 4’-methyl-

acetophenone in 2-propanol at reflux and NaOiPr 2 mol% promoted by complex 3 at S/C 1000 after 30 

min. GC analyses were performed with a Varian CP-3380 gas chromatograph equipped with a 25 m 

length MEGADEX-ETTBDMS-β chiral column with hydrogen (5 psi) as the carrier gas and flame 

ionization detector (FID). The injector and detector temperature was 250 °C, with initial T = 95 °C 

ramped to 140 °C at 3 °C/min, then to 210 °C at 30 °C/min, which is maintained for other 3 min. for a 

total of 20 min of analysis. 
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Figure S42. GC-FID chromatogram of the reaction mixture of the catalytic TH of 2’-methyl-

acetophenone in 2-propanol at reflux and NaOiPr 2 mol% promoted by complex 3 at S/C 1000 after 30 

min. GC analyses were performed with a Varian CP-3380 gas chromatograph equipped with a 25 m 

length MEGADEX-ETTBDMS-β chiral column with hydrogen (5 psi) as the carrier gas and flame 

ionization detector (FID). The injector and detector temperature was 250 °C, with initial T = 95 °C 

ramped to 140 °C at 3 °C/min, then to 210 °C at 30 °C/min, which is maintained for other 3 min. for a 

total of 20 min of analysis. 
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Figure S43. GC-FID chromatogram of the reaction mixture of the catalytic Oppenauer-type oxidation 

of rac--tetralol in toluene at reflux with KOtBu 5 mol% and in presence of acetone (10 equiv) promoted 

by complex 1 at S/C 1000 after 20 min. GC analyses were performed with a Varian CP-3380 gas 

chromatograph equipped with a 25 m length MEGADEX-ETTBDMS-β chiral column with hydrogen (5 

psi) as the carrier gas and flame ionization detector (FID). The injector and detector temperature was 

250 °C, with initial T = 125 °C ramped to 155 °C at 2 °C/min, then to 195 °C at 20 °C/min, which is 

maintained for other 3 min. for a total of 20 min of analysis. 
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General Procedure for the Oppenauer-type oxidation of secondary alcohols 

 

The ruthenium catalyst solutions used for these reactions were prepared by dissolving the complexes (1-

4, 2 mol) in toluene (2 mL). The alcohol substrate (1.0 mmol) was dissolved in toluene (8.26 mL (when 

acetone was used as proton acceptor) or 8.38 mL (when cyclohexanone was used)), and the catalyst 

solution (1.0 mL, 1.0 mol) and KOtBu (5.6 mg, 0.05 mmol) were added. After heating at reflux, acetone 

(740 µL, 580 mg, 10 mmol) or cyclohexanone (621 µL, 588.8 mg, 6.0 mmol) were added (final volume 

10 mL). The reaction was sampled by removing an aliquot of the reaction mixture, which was quenched 

by addition of diethyl ether (1:1 v/v), filtered over a short silica pad and submitted to GC analysis. The 

ketone addition was considered as the start time of the reaction. The S/C molar ratio was 1000/1, whereas 

the base concentration was 5 mol% respect to the alcohol substrates (0.1 M). The same procedure was 

followed for the Oppenauer-type oxidation reactions with different S/C (250 - 1000), using the 

appropriate amount of catalyst.  

For the isolation of ketones with 4, the final mixture was filtered over a short silica pad and condensed 

under reduced pressure. The crude residue was dissolved with diethyl ether (5 mL) and the organic layer 

washed with a diluted solution of HCl (0.1 M; 3 x 3 mL), dried over anhydrous Na2SO4, and the solvent 

gently evaporated, affording the ketone products. In some cases, it was necessary to use a purification 

by flash silica gel column chromatography, using petroleum/ethyl acetate as eluent, to obtain the final 

products (yields: 44-95%). (1R)-(+)-camphor, on the other hand, was purified through a sublimation 

process. All compounds were characterized by 1H and 13C{1H} NMR. 

 

 

α-Tetralone:1 

Clear amber oily liquid; yield: 95%. 

1H NMR (400.1 MHz, CDCl3, 25 °C): δ = 7.96 (dd, 3JHH = 7.7 Hz, 4JHH = 1.3 Hz, 1H; aromatic proton), 

7.40 (dd, 3JHH = 7.4 Hz, 4JHH =1.4 Hz, 1H; aromatic proton), 7.22 (t, 3JHH = 7.6 Hz, 1H; aromatic proton), 

7.17 (d, 3JHH = 7.8 Hz, 1H; aromatic proton), 2.87 (t, 3JHH = 6.0 Hz, 2H; CH2CH2CH2CO), 2.56 (t, 3JHH 

= 6.6 Hz, 2H; CH2CH2CH2CO), 2.04 ppm (m, 2H; CH2CH2CH2CO). 

13C{1H} NMR (100.6 MHz, CDCl3, 25 °C): δ = 198.3 (s; CO), 144.5 (s; aromatic ipso carbon), 133.4 

(s; aromatic carbon atom), 132.6 (s; aromatic ipso carbon), 128.8 (s; aromatic carbon atom), 127.1 (s; 

aromatic carbon atom), 126.6 (s; aromatic carbon atom), 39.1 (s; CH2CH2CH2CO), 29.6 (s; 

CH2CH2CH2CO), 23.3 ppm (s; CH2CH2CH2CO). 
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Benzophenone:2 

White crystals; m.p. 47-49 °C (47-49 °C, lit.); yield: 71%. 

1H NMR (400.1 MHz, CDCl3, 25 °C): δ = 7.75 (dd, 3JHH = 8.3 Hz, 4JHH = 1.2 Hz, 4H; aromatic protons), 

7.52 (tt, 3JHH =7.3 Hz, 4JHH = 1.4 Hz, 2H; aromatic protons), 7.41 ppm (t, 3JHH = 7.7 Hz, 4H; aromatic 

protons); 

13C{1H} NMR (100.6 MHz, CDCl3, 25 °C): δ = 196.8 (s; CO), 137.6 (s; aromatic ipso carbons), 132.5 

(s; aromatic carbon atoms), 130.1 (s; aromatic carbon atoms), 128.3 ppm (s; aromatic carbon atoms). 

 

4'-Methylacetophenone:3 

Colorless liquid; yield: 94%. 

1H NMR (400.1 MHz, CDCl3, 25 °C): δ = 7.85 (d, 3JHH = 8.3 Hz, 2H; aromatic protons), 7.24 (d, 3JHH = 

8.3 Hz, 2H; aromatic protons), 2.56 (s, 3H; COCH3), 2.39 ppm (s, 3H, CH3);  

13C{1H} NMR (100.6 MHz, CDCl3, 25 °C): δ = 197.8 (s; CO), 143.9 (s; aromatic ipso carbon), 134.7 

(s; aromatic ipso carbon), 129.2 (s; aromatic carbon atoms), 128.4 (s; aromatic carbon atoms), 26.5 (s; 

COCH3), 21.6 ppm (s; CH3). 

 

Propiophenone:2 

Colorless liquid; yield: 75%. 

1H NMR (400.1 MHz, CDCl3, 25 °C): δ = 7.84 (m, 2H; aromatic protons), 7.44-7.39 (m, 1H; aromatic 

proton), 7.32 (m, 2H; aromatic protons), 2.86 (q, 3JHH = 7.3 Hz, 2H; CH2CH3), 1.10 ppm (t, 3JHH = 7.3 

Hz, 3H; CH2CH3);  

3C{1H} NMR (100.6 MHz, CDCl3, 25 °C): δ = 200.7 (s; CO), 136.9 (s; aromatic ipso carbon), 132.8 (s; 

aromatic carbon atom), 128.5 (s; aromatic carbon atom), 127.9 (s; aromatic carbon atom), 31.7 (s; 

CH2CH3), 8.2 ppm (s; CH2CH3). 

 

2-heptanone:4 

Colorless liquid; yield: 83%. 

1H NMR (400.1 MHz, CDCl3, 25 °C): δ = 2.41 (t, 3JHH = 7.1 Hz, 2H; CH2COCH3), 2.12 (s, 3H; COCH3), 

1.55 (m, 2H; CH2CH2CO), 1.27 (m, 4H; CH2), 0.89 ppm (t, 3JHH = 6.5 Hz, 3H; CH2CH3). 

3C{1H} NMR (100.6 MHz, CDCl3, 25 °C): δ = 209.4 (s; CO), 43.9 (s; CH2COCH3), 31.2 (s; 

CH2CH2CO), 29.9 (s; COCH3), 22.8 (s; CH2), 22.6 (s; CH2), 13.9 ppm (s; CH2CH3). 
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(1R)-(+)-camphor:5 

Colorless solid; m.p. 176 °C (175-177 °C, lit.); yield: 44%. 

1H NMR (400.1 MHz, CDCl3, 25 °C): δ = 2.26 (dt, 2JHH = 18.2 Hz, 3JHH = 3.9 Hz, 1H; CH2CO), 2.00 (t, 

3JHH = 4.5 Hz, 1H; CH2CH(CMe2)CH2), 1.86 (ddt, 2JHH = 12.1 Hz, 2JHH = 7.8 Hz, 3JHH = 3.5 Hz, 1H; 

CH2CH2CH(CMe2)), 1.75 (d, 2JHH = 18.2 Hz, 1H; CH2CO), 1.59 (td, 2JHH = 12.1 Hz, 3JHH = 11.0 Hz, 

3JHH = 3.3 Hz, 1H; CH2CH2(CMe)), 1.38-1.16 (m, 2H; CH2CH2(CMe)), 0.87 (s, 3H; C(CH3)2), 0.82 (s, 

3H; CH3), 0.75 ppm (s, 3H; C(CH3)2)). 

13C{1H} NMR (100.6 MHz, CDCl3, 25 °C): δ = 219.7 (s; CO), 57.7 (s; CMe2), 46.8 (s; CMe), 43.3 (s; 

CH2CO), 43.0 (s; CH2CH(CMe2)CH2), 29.9 (s; CH2(CMe)), 27.1 (s; CH2CH(CMe2)CH2), 19.8 (s; 

C(CH3)2), 19.2 (s; C(CH3)2), 9.3 ppm (s; C(CH3)). 
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Figure S44. 1H NMR spectrum (400.1 MHz) of α-tetralone obtained from catalytic Oppenauer-type 

oxidation of α-tetralol in CDCl3 at 25 °C. 
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Figure S45. 13C{1H} DEPTQ NMR spectrum (100.6 MHz) of α-tetralone obtained from catalytic 

Oppenauer-type oxidation of α-tetralol in CDCl3 at 25 °C. 
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Figure S46. 1H NMR spectrum (400.1 MHz) of benzophenone obtained from catalytic Oppenauer-type 

oxidation of benzhydrol in CDCl3 at 25 °C. 
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Figure S47. 13C{1H} DEPTQ NMR spectrum (100.6 MHz) of benzophenone obtained from catalytic 

Oppenauer-type oxidation of benzhydrol in CDCl3 at 25 °C. 
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Figure S48. 1H NMR spectrum (400.1 MHz) of 4’-methylacetophenone obtained from catalytic 

Oppenauer-type oxidation of 1-(p-tolyl)ethanol in CDCl3 at 25 °C. 
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Figure S49. 13C{1H} DEPTQ NMR spectrum (100.6 MHz) of 4’-methylacetophenone obtained from 

catalytic Oppenauer-type oxidation of 1-(p-tolyl)ethanol in CDCl3 at 25 °C. 



S59  

 

 

Figure S50. 1H NMR spectrum (400.1 MHz) of propiophenone obtained from catalytic Oppenauer-type 

oxidation of 1-phenyl-1-propanol in CDCl3 at 25 °C. 
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Figure S51. 13C{1H} DEPTQ NMR spectrum (100.6 MHz) of propiophenone obtained from catalytic 

Oppenauer-type oxidation of 1-phenyl-1-propanol in CDCl3 at 25 °C. 
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Figure S52. 1H NMR spectrum (400.1 MHz) of 2-heptanone obtained from catalytic Oppenauer-type 

oxidation of 2-heptanol in CDCl3 at 25 °C. 
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Figure S53. 13C{1H} DEPTQ NMR spectrum (100.6 MHz) of  2-heptanone obtained from catalytic 

Oppenauer-type oxidation of 2-heptanol in CDCl3 at 25 °C. 
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Figure S54. 1H NMR spectrum (400.1 MHz) of (1R)-(+)-camphor obtained from catalytic Oppenauer-

type oxidation of (1R)-(+)-borneol in CDCl3 at 25 °C. 
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Figure S55. 13C{1H} DEPTQ NMR spectrum (100.6 MHz) of (1R)-(+)-camphor obtained from catalytic 

Oppenauer-type oxidation of (1R)-(+)-borneol in CDCl3 at 25 °C. 
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General Procedure for the catalytic transfer hydrogenation (TH) of carbonyl compounds 

 

The ruthenium catalyst solutions used for the catalytic TH were prepared by dissolving the complexes 

(1-4, 2 mol) in 2-propanol (2 mL). The catalyst solution (1.0 mL, 1.0 mol) and a 0.1 M solution of 

NaOiPr (200 L, 20 mol) in 2-propanol were added subsequently to the carbonyl substrate (1.0 mmol) 

dissolved in 2-propanol (final volume 10 mL), and the mixture was heated at reflux. The reaction was 

sampled by removing an aliquot of the reaction mixture, which was quenched by addition of diethyl 

ether (1:1 v/v), filtered over a short silica pad and submitted to GC analysis. The base addition was 

considered as the start time of the reaction. The S/C molar ratio was 1000/1, whereas the base 

concentration was 2 mol% respect to the carbonyl substrates (0.1 M). The same procedure was followed 

for the TH reactions with different S/C (1000-10000), using the appropriate amount of catalyst. 

For the isolation of alcohols with 4, the final mixture was filtered over a short silica pad and evaporated 

under reduced pressure. The crude residue was dissolved with diethyl ether (5 mL) and the organic layer 

washed with a diluted solution of HCl (0.1 M; 3 x 5 mL), dried over anhydrous Na2SO4, and the solvent 

gently evaporated, affording the alcohol products (yields: 72-94%). In some cases, it was necessary to 

use a purification by flash silica gel column chromatography, using petroleum ether 40-60 °C/ethyl 

acetate or chloroform/methanol as eluents, to obtain the final products. All compounds were 

characterized by 1H and 13C{1H} NMR. 

 

 

1-Phenylethanol:6 

Colorless liquid; Yield, 94%.  

1H NMR (400.1 MHz, CDCl3, 25 °C): δ = 7.34-7.19 (m, 5H; aromatic protons), 4.78 (q, 3JHH = 6.5 Hz, 

1H; CHCH3), 2.79 (s, 1H; OH), 1.41 ppm (d, 3JHH = 6.5 Hz, 3H; CHCH3); 

13C{1H} NMR (100.6 MHz, CDCl3, 25 °C): δ = 146.0 (s; aromatic ipso carbon), 128.5 (s; aromatic 

carbon atom), 127.4 (s; aromatic carbon atom), 125.5 (s; aromatic carbon atom), 70.3 (s; CHCH3), 25.2 

ppm (s; CHCH3). 

 

1-(o-tolyl)ethanol:6b, c 

Colorless oil; Yield, 91%.  

1H NMR (400.1 MHz, CDCl3, 25 °C): δ = 7.46 (dd, 3JHH = 7.7 Hz, 4JHH = 1.0 Hz, 1H; aromatic proton), 

7.28-7.04 (m, 3H; aromatic protons), 5.02 (q, 3JHH = 6.4, 1H; CHCH3), 2.87 (s, 1H; OH), 2.29 (s, 3H; 

CH3), 1.40 ppm (d, 3JHH = 6.4 Hz, 3H; CHCH3); 
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13C{1H} NMR (100.6 MHz, CDCl3, 25 °C): δ = 144.0 (s; aromatic ipso carbon), 134.2 (s; aromatic ipso 

carbon), 130.4 (s; aromatic carbon atom), 127.1 (s; aromatic carbon atom), 126.4 (s; aromatic carbon 

atom), 124.7 (s; aromatic carbon atom), 66.7 (s; CHCH3), 24.0 (s; CHCH3), 19.0 ppm (s; CH3). 

 

1-(p-tolyl)ethan-1-ol:6c, 7 

Colorless oil; Yield, 89%.  

1H NMR (400.1 MHz, CDCl3, 25 °C): δ = 7.21 (d, 3JHH = 8.1 Hz, 2H; aromatic protons), 7.12 (d, 3JHH = 

8.1 Hz, 2H; aromatic protons), 4.76 (q, 3JHH = 6.5, 1H; CHCH3), 2.96 (s, 1H; OH), 2.33 (s, 3H; CH3), 

1.42 ppm (d, 3JHH = 6.5 Hz, 3H; CHCH3);
  

13C{1H} NMR (100.6 MHz, CDCl3, 25 °C): δ = 143.1 (s; aromatic ipso carbon), 136.9 (s; aromatic ipso 

carbon), 129.1 (s; aromatic carbon atoms), 125.5 (s; aromatic carbon atoms), 70.0 (s; CHCH3), 25.2 (s; 

CHCH3), 21.1 ppm (s; CH3). 

 

1-(2’-Methoxyphenyl)ethanol:6a, 8 

Colorless oil; Yield, 92%.  

1H NMR (400.1 MHz, CDCl3, 25 °C): δ = 7.31 (dd, 3JHH = 7.5 Hz, 4JHH = 1.7 Hz, 1H; aromatic proton), 

7.18 (td, 3JHH = 8.0 Hz, 4JHH = 1.7 Hz, 1H; aromatic proton), 6.90 (td, 3JHH = 7.5 Hz, 4JHH = 0.9 Hz, 1H; 

aromatic proton), 6.80 (d, 3JHH = 8.0 Hz, 1H; aromatic proton), 5.05 (q, 3JHH = 6.5 Hz, 1H; CHCH3), 

3.76 (s, 3H; OCH3), 3.11 (s, 1H; OH), 1.42 ppm (d, 3JHH = 6.5 Hz, 3H; CHCH3); 

13C{1H} NMR (100.6 MHz, CDCl3, 25 °C): δ = 156.4 (s; aromatic ipso carbon), 133.8 (s; aromatic ipso 

carbon), 128.2 (s; aromatic carbon atom), 126.0 (s; aromatic carbon atom), 120.8 (s; aromatic carbon 

atom), 110.4 (s; aromatic carbon atom), 66.0 (s; CHCH3), 55.2 (s; OCH3), 23.1 ppm (s; CHCH3) 

 

Benzhydrol (Diphenylmethanol):6c 

White crystals; m.p. 68 °C (69 °C, lit.); Yield, 90%.  

1H NMR (400.1 MHz, CDCl3, 25 °C): δ = 7.44-7.34 (m, 8H; aromatic protons), 7.32-7.27 (m, 2H; 

aromatic protons), 5.87 (d, 3JHH = 3.5 Hz, 1H; CHOH), 2.28 ppm (d, 3JHH = 3.5 Hz, 1H; OH);  

13C{1H} NMR (100.6 MHz, CDCl3, 25 °C): δ = 143.8 (s; aromatic ipso carbons), 128.5 (s; aromatic 

carbon atoms), 127.6 (s; aromatic carbon atoms), 126.6 (s; aromatic carbon atoms), 76.3 ppm (s; CHOH). 
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Cyclohexanol:7 

Colorless oil; Yield, 95%. 

1H NMR (400.1 MHz, CDCl3, 25 °C): δ = 3.57 (tt, 3JHH = 8.8 Hz, 3JHH = 4.2 Hz, 1H; CHOH), 2.00 (s, 

1H; OH), 1.90-1.82 (m, 2H; CH2CHOH), 1.75-1.65 m, 2H; CH2), 1.56-1.47 (m, 1H; CH2), 1.31-1.07 

ppm (m, 5H; CH2);
 

13C{1H} NMR (100.6 MHz, CDCl3, 25 °C): δ = 70.3 (s; CHOH), 35.5 (s; CH2CHOH), 25.5 (s; CH2), 

24.1 ppm (s; CH2). 

 

Benzyl alcohol:7, 9 

Colorless liquid; Yield, 72%. 

1H NMR (400.1 MHz, CDCl3, 25 °C): δ = 7.35-7.22 (m, 5H; aromatic protons), 4.55 (br s, 2H; CH2OH), 

2.98 ppm (br s, 1H; OH); 

13C{1H} NMR (100.6 MHz, CDCl3, 25 °C): δ = 141.0 (s; aromatic ipso carbon), 128.6 (s; aromatic 

carbon atoms), 127.6 (s; aromatic carbon atoms), 127.1 (s; aromatic carbon atoms), 65.0 ppm (s; 

CH2OH). 
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Figure S56. 1H NMR spectrum (400.1 MHz) of 1-Phenylethanol obtained from catalytic TH of 

acetophenone in CDCl3 at 25 °C. 
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Figure S57. 13C{1H}NMR spectrum (100.6 MHz) of 1-Phenylethanol obtained from catalytic TH of 

acetophenone in CDCl3 at 25 °C. 
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Figure S58. 1H NMR spectrum (400.1 MHz) of 1-(o-tolyl)ethanol obtained from catalytic TH of 2’-

methylacetophenone in CDCl3 at 25 °C. 
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Figure S59. 13C{1H}NMR spectrum (100.6 MHz) of 1-(o-tolyl)ethanol obtained from catalytic TH of 

2’-methylacetophenone in CDCl3 at 25 °C. 
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Figure S60. 1H NMR spectrum (400.1 MHz) of 1-(p-tolyl)ethanol obtained from catalytic TH of 4’-

methylacetophenone in CDCl3 at 25 °C. 
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Figure S61. 13C{1H}NMR spectrum (100.6 MHz) of 1-(p-tolyl)ethanol obtained from catalytic TH of 

4’-methylacetophenone in CDCl3 at 25 °C. 
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Figure S62. 1H NMR spectrum (400.1 MHz) of 1-(2’-methoxy-phenyl)ethanol obtained from catalytic 

TH of 2’-methoxyacetophenone in CDCl3 at 25 °C. 
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Figure S63. 13C{1H}NMR spectrum (100.6 MHz) of 1-(2’-methoxy-phenyl)ethanol obtained from 

catalytic TH of 2’-methoxyacetophenone in CDCl3 at 25 °C. 
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Figure S64. 1H NMR spectrum (400.1 MHz) of benzhydrol obtained from catalytic TH of benzophenone 

in CDCl3 at 25 °C. 
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Figure S65. 13C{1H}NMR spectrum (100.6 MHz) of benzhydrol obtained from catalytic TH of 

benzophenone in CDCl3 at 25 °C. 
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Figure S66. 1H NMR spectrum (400.1 MHz) of cyclohexanol obtained from catalytic TH of 

cyclohexanone in CDCl3 at 25 °C. 
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Figure S67. 13C{1H}NMR spectrum (100.6 MHz) of cyclohexanol obtained from catalytic TH of 

cyclohexanone in CDCl3 at 25 °C. 
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Figure S68. 1H NMR spectrum (400.1 MHz) of benzyl alcohol obtained from catalytic TH of 

benzaldehyde in CDCl3 at 25 °C. 
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Figure S69. 13C{1H}NMR spectrum (100.6 MHz) of benzyl alcohol obtained from catalytic TH of 

benzaldehyde in CDCl3 at 25 °C. 
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Single Crystal X-Ray Structure Determination of Compounds 1-4 (CCDC 2253558-2253561)  

 

General Data 

 

X-ray diffraction data were collected at 100 K on an X-ray single crystal diffractometer equipped with 

a CPAD detector (Bruker Photon-II CPAD), an IMS  microsource with MoKα radiation (λ = 0.71073 Å) 

and a Helios optic using the APEX4 software package.10 Measurements were performed on a single 

crystal coated with perfluorinated ether and the crystal was fixed on top of a Kapton micro sampler, 

transferred to the diffractometer and frozen under a stream of cold nitrogen. A matrix scan was used to 

determine the initial lattice parameters. Reflections were merged and corrected for Lorenz and 

polarization effects, scan speed and background using SAINT.11 Absorption corrections, including odd 

and even ordered spherical harmonics were performed using SADABS.11 Based on systematic absences, 

E-statistics and successful refinement of the structures, the space group was assigned. The structures 

were solved by direct methods with the aid of successive difference Fourier maps, and were refined 

against all data using APEX4 software with SHELXL in conjunction with SHELXLE.12-14 Full-matrix 

least-squares refinements were carried out by minimizing Σw(Fo
2 - Fc

2)2 with the SHELXL weighting 

scheme.12 All non-hydrogen atoms were refined using anisotropic displacement parameters and 

hydrogen atoms were calculated in ideal positions with Uiso(H) = 1.2 Ueq(C). Neutral atom scattering 

factors for all atoms and anomalous dispersion corrections for the non-hydrogen atoms were taken from 

International Tables for Crystallography.15  Structural illustrations were generated with Mercury and 

Platon.21 for Windows.16, 17 CCDC 2253558-2253561 contain the supplementary crystallographic data 

for this paper. These data are provided free of charge by The Cambridge Crystallographic Data Centre. 
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Single Crystal X-Ray Structure Determination of Compound 1 (CCDC 2253559). 

 

 

Figure S70. ORTEP style plot of compound 1 in the solid state (CCDC 2253559). Ellipsoids are drawn 

at the 50% probability level. Hydrogen atoms are omitted for clarity. Selected bond lengths [Å] and 

angles [°]: Ru1–N1 2.1030(16), Ru1-C13 2.0342(18), Ru1-O2 2.2242(13), Ru1-P1 2.2292(5), Ru1-O1 

2.2582(13), Ru1-P2 2.2814(5), C13-Ru1-N1 79.89(7), C13-Ru1-O2 102.61(6), N1-Ru1-O2 83.18(5), 

C13-Ru1-P1 86.15(5), N1-Ru1-P1 91.65(4), O2-Ru1-P1 168.81(4), C13-Ru1-O1 158.30(6), N1-Ru1-

O1 86.67(6), O2-Ru1-O1 58.57(5), P1-Ru1-O1 111.37(4), C13-Ru1-P2 101.34(5), N1-Ru1-P2 

172.56(4), O2-Ru1-P2 89.40(4), P1-Ru1-P2 95.747(18), O1-Ru1-P2 89.90(4). 
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Single Crystal X-Ray Structure Determination of Compound 1 (CCDC 2253559). 

 

 

Detailed Crystallographic Data. 

 

Diffractometer operator:   A. A. Heidecker 

Scanspeed     1-3 s per frame  

dx      40 mm  

Frames:     2109 measured in 8 XYZ data sets  

phi-scans with delta phi   0.5/1.0  

omega-scans with delta omega  0.5 

 

Crystal Data: 

 

Chemical formula [C41H39NO2P2Ru] Density (calculated) = 1.467 g/cm3 

Formula weight 740.74 Absorption coefficient = 0.601 mm-1 

monoclinic, P 21/n Mo Kα radiation, λ = 0.71073 Å 

a = 9.8638(10) Å       α = 90° Cell parameters from 106782 reflections 

b = 17.891(2) Å         β = 90.761(4)°  θ = 2.28–27.48° 

c = 19.013(2) Å         γ = 90° T = 100(2) K 

V = 3355.0(6) Å3 clear orange fragment 

Z = 4 0.050 x 0.164 x 0.222 mm 

F(000) = 1528  

 

Data collection: 

 

Bruker D8 Venture Duo IMS  

diffractometer 
7691 independent reflections 

Radiation source: TXS rotating anode 6956 reflections with I > 2σ(F2) 

Helios optic monochromator Rint = 0.0769 

Theta range for data collection θmax = 27.48°, θmin = 2.28° 

Index ranges -12<=h<=12, -23<=k<=23, -24<=l<=24 

Absorption correction Multi-Scan, SADABS 2016/2, Bruker 

file:///C:/Users/maurizio/Desktop/fotochimica/barwa26_0m%20_symmetry_cell_setting
file:///C:/Users/maurizio/Desktop/fotochimica/barwa26_0m%20_symmetry_space_group_name_H-M
file:///C:/Users/maurizio/Desktop/fotochimica/barwa26_0m%20_diffrn_radiation_type
file:///C:/Users/maurizio/Desktop/fotochimica/barwa26_0m%20_diffrn_radiation_type
file:///C:/Users/maurizio/Desktop/fotochimica/barwa26_0m%20_diffrn_radiation_type
file:///C:/Users/maurizio/Desktop/fotochimica/barwa26_0m%20_diffrn_radiation_wavelength
file:///C:/Users/maurizio/Desktop/fotochimica/barwa26_0m%20_cell_measurement_theta_min
file:///C:/Users/maurizio/Desktop/fotochimica/barwa26_0m%20_cell_measurement_theta_max
file:///C:/Users/maurizio/Desktop/fotochimica/barwa26_0m%20_cell_formula_units_Z
file:///C:/Users/maurizio/Desktop/fotochimica/barwa26_0m%20_diffrn_measurement_device_type
file:///C:/Users/maurizio/Desktop/fotochimica/barwa26_0m%20_diffrn_radiation_source
file:///C:/Users/maurizio/Desktop/fotochimica/barwa26_0m%20_reflns_threshold_expression
file:///C:/Users/maurizio/Desktop/fotochimica/barwa26_0m%20_reflns_threshold_expression
file:///C:/Users/maurizio/Desktop/fotochimica/barwa26_0m%20_diffrn_radiation_monochromator
file:///C:/Users/maurizio/Desktop/fotochimica/barwa26_0m%20_diffrn_reflns_theta_min
file:///C:/Users/maurizio/Desktop/fotochimica/barwa26_0m%20_exptl_absorpt_process_details
file:///C:/Users/maurizio/Desktop/fotochimica/barwa26_0m%20_exptl_absorpt_process_details
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Max. and min. transmission:  0.7043 and 0.6692 

106782 measured reflections Coverage of independent reflections = 99.9% 

 

Data refinement: 

 

Refinement method Full-matrix least-squares on F2 

Refinement program SHELXL-2018/3 (Sheldrick, 2018) 

Structure solution technique direct methods 

Structure solution program SHELXT 2018/2 (Sheldrick, 2018) 

Function minimized Σ w(Fo2 - Fc2)2 

Data / restraints / parameters 7691 / 0 / 425 

Final R indices 

6956 data; I > 2σ(I) R1 = 0.0273, wR2 = 0.0676 

 

all data                     R1 = 0.0320, wR2 = 0.0704 

Weighting scheme 

w = 1/[σ2(Fo2) + (0.0262P)2 + 3.6827P] 

 

where P = (Fo2 + 2Fc2)/3 

Δ/σmax 0.001 

Goodness-of-fit on F2 1.041 

Largest diff. peak and hole 0.449 and -0.464 eÅ-3 

R.M.S. deviation from mean 0.069 eÅ-3 
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Single Crystal X-Ray Structure Determination of Compound 2 (CCDC 2253561). 

 

 
 

Figure S71. ORTEP style plot of compound 2 in the solid state (CCDC 2253561). Ellipsoids are drawn 

at the 50% probability level. Hydrogen atoms are omitted for clarity. Selected bond lengths [Å] and 

angles [°]: Ru1-C15 2.040(3), Ru1-N1 2.115(3), Ru1-P2A 2.201(3), Ru1-O1 2.209(2), Ru1-P1 

2.2338(8), Ru1-O2 2.237(2), Ru1-P2B 2.348(3), C15-Ru1-N1 80.84(12), C15-Ru1-P2A 105.26(13), 

N1-Ru1-P2A 171.13(10), C15-Ru1-O1 104.13(11), N1-Ru1-O1 83.62(10), P2A-Ru1-O1 88.59(10), 

C15-Ru1-P1 83.76(8), N1-Ru1-P1 92.51(8), P2A-Ru1-P1 94.53(8), O1-Ru1-P1 170.46(8), C15-Ru1-

O2 159.86(10), N1-Ru1-O2 85.91(10), P2A-Ru1-O2 86.46(11), O1-Ru1-O2 59.07(10), P1-Ru1-O2 

112.06(8), C15-Ru1-P2B 96.00(12), N1-Ru1-P2B 169.52(11), O1-Ru1-P2B 87.51(10), P1-Ru1-P2B 

97.09(7), O2-Ru1-P2B 94.32(10). 
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Single Crystal X-Ray Structure Determination of Compound 2 (CCDC 2253561) 

 

 

Detailed Crystallographic Data. 

 

Diffractometer operator:   A. A. Heidecker 

Scanspeed     1-8 s per frame  

dx      40 mm  

Frames:     3689 measured in 12 XYZ data sets  

phi-scans with delta phi   0.5/1.0  

omega-scans with delta omega  0.5 

 

Crystal Data: 

 

Chemical formula [C43H39NO2P2Ru] Density (calculated) = 1.457 g/cm3 

Formula weight 764.76 Absorption coefficient = 0.581 mm-1 

monoclinic, C 2/c Mo Kα radiation, λ = 0.71073 Å 

a = 29.656(5) Å         α = 90° Cell parameters from 188606 reflections 

b = 9.7750(17) Å       β = 106.902(5)°  θ = 1.88-27.48° 

c = 25.141(4) Å         γ = 90° T = 100(2) K 

V = 6973.2(19) Å3 clear light yellow-orange plate 

Z = 8 0.030 x 0.132 x 0.398 mm 

F(000) = 3152  

 

Data collection: 

 

Bruker D8 Venture Duo IMS  

diffractometer 
8003 independent reflections 

Radiation source: TXS rotating anode 7248 reflections with I > 2σ(F2) 

Helios optic monochromator Rint = 0.0966 

Theta range for data collection θmax = 27.48°, θmin = 1.88° 

Index ranges -38<=h<=38, -12<=k<=12, -32<=l<=32 

file:///C:/Users/maurizio/Desktop/fotochimica/barwa26_0m%20_symmetry_cell_setting
file:///C:/Users/maurizio/Desktop/fotochimica/barwa26_0m%20_diffrn_radiation_type
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Absorption correction 

 
Multi-Scan, SADABS 2016/2, Bruker 

Max. and min. transmission:  0.9830 and 0.8020 

188606 measured reflections Coverage of independent reflections = 100.0% 

 

Data refinement: 

 

Refinement method Full-matrix least-squares on F2 

Refinement program SHELXL-2018/3 (Sheldrick, 2018) 

Structure solution technique direct methods 

Structure solution program SHELXT 2018/2 (Sheldrick, 2018) 

Function minimized Σ w(Fo2 - Fc2)2 

Data / restraints / parameters 8003 / 277 / 587 

Final R indices 

7248 data; I > 2σ(I) R1 = 0.0501, wR2 = 0.0926 

 

all data                     R1 = 0.0571, wR2 = 0.0955 

Weighting scheme 

w = 1/[σ2(Fo2) + 39.9662P] 

 

where P = (Fo2 + 2Fc2)/3 

Δ/σmax 0.001 

Goodness-of-fit on F2 1.214 

Largest diff. peak and hole 0.436 and -1.068 eÅ-3 

R.M.S. deviation from mean 0.087 eÅ-3 
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Single Crystal X-Ray Structure Determination of Compound 3 (CCDC 2253560) 
 

 

Figure S72. ORTEP style plot of compound 3 in the solid state (CCDC 2253560). Ellipsoids are drawn 

at the 50% probability level. Hydrogen atoms are omitted for clarity. Selected bond lengths [Å] and 

angles [°]: Ru1-C3 2.054(4), Ru1-N2 2.084(3), Ru1-P1 2.2282(10), Ru1-O2 2.233(2), Ru1-O1 2.247(2), 

Ru1-P2 2.2756(10), Ru1-C1 2.581(4), P1-C12 1.834(3), C3-Ru1-N2 79.56(13), C3-Ru1-P1 85.38(10), 

N2-Ru1-P1 92.22(8), C3-Ru1-O2 103.57(11), N2-Ru1-O2 83.44(10), P1-Ru1-O2 169.09(7), C3-Ru1-

O1 158.67(11), N2-Ru1-O1 86.02(10), P1-Ru1-O1 110.99(7), O2-Ru1-O1 58.84(9), C3-Ru1-P2 

101.12(10), N2-Ru1-P2 171.92(8), P1-Ru1-P2 95.85(3), O2-Ru1-P2 88.59(7), O1-Ru1-P2 91.01(7). 
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Single Crystal X-Ray Structure Determination of Compound 3 (CCDC 2253560) 

 

Detailed Crystallographic Data. 

 

Diffractometer operator:   A. A. Heidecker 

Scanspeed     1-10 s per frame  

dx      40 mm  

Frames:     1673 measured in 8 XYZ data sets  

phi-scans with delta phi   0.5/1.0  

omega-scans with delta omega  -0.5/0.5 

 

Crystal Data: 

 

Chemical formula [C39H38N2O2P2Ru] Density (calculated) = 1.459 g/cm3 

Formula weight 729.72 Absorption coefficient = 0.606 mm-1 

Monoclinic, P 21/n Mo Kα radiation, λ = 0.71073 Å 

a = 9.845(2) Å           α = 90° Cell parameters from 58152 reflections 

b = 17.644(4) Å         β = 90.757(7)°  θ = 2.13-25.36° 

c = 19.132(4) Å         γ = 90° T = 100(2) K 

V = 3323.0(12) Å3 clear green rectangle 

Z = 4 0.081 x 0.089 x 0.105 mm 

F(000) = 1504  

 

Data collection: 

 

Bruker D8 Venture Duo IMS  

diffractometer 
6080 independent reflections 

Radiation source: TXS rotating anode 5164 reflections with I > 2σ(F2) 

Helios optic monochromator Rint = 0.0920 

Theta range for data collection θmax = 25.36°, θmin = 2.13° 

Index ranges -11<=h<=11, -21<=k<=21, -21<=l<=23 

Absorption correction 

 
Multi-Scan, SADABS 2016/2, Bruker 

file:///C:/Users/maurizio/Desktop/fotochimica/barwa26_0m%20_symmetry_cell_setting
file:///C:/Users/maurizio/Desktop/fotochimica/barwa26_0m%20_diffrn_radiation_type
file:///C:/Users/maurizio/Desktop/fotochimica/barwa26_0m%20_diffrn_radiation_type
file:///C:/Users/maurizio/Desktop/fotochimica/barwa26_0m%20_diffrn_radiation_type
file:///C:/Users/maurizio/Desktop/fotochimica/barwa26_0m%20_diffrn_radiation_wavelength
file:///C:/Users/maurizio/Desktop/fotochimica/barwa26_0m%20_cell_measurement_theta_min
file:///C:/Users/maurizio/Desktop/fotochimica/barwa26_0m%20_cell_measurement_theta_max
file:///C:/Users/maurizio/Desktop/fotochimica/barwa26_0m%20_cell_formula_units_Z
file:///C:/Users/maurizio/Desktop/fotochimica/barwa26_0m%20_diffrn_measurement_device_type
file:///C:/Users/maurizio/Desktop/fotochimica/barwa26_0m%20_diffrn_radiation_source
file:///C:/Users/maurizio/Desktop/fotochimica/barwa26_0m%20_reflns_threshold_expression
file:///C:/Users/maurizio/Desktop/fotochimica/barwa26_0m%20_reflns_threshold_expression
file:///C:/Users/maurizio/Desktop/fotochimica/barwa26_0m%20_diffrn_radiation_monochromator
file:///C:/Users/maurizio/Desktop/fotochimica/barwa26_0m%20_diffrn_reflns_theta_min
file:///C:/Users/maurizio/Desktop/fotochimica/barwa26_0m%20_exptl_absorpt_process_details
file:///C:/Users/maurizio/Desktop/fotochimica/barwa26_0m%20_exptl_absorpt_process_details


S91  

58152 measured reflections Coverage of independent reflections = 99.9% 

 

Data refinement: 

 

Refinement method Full-matrix least-squares on F2 

Refinement program SHELXL-2018/3 (Sheldrick, 2018) 

Structure solution technique direct methods 

Structure solution program SHELXT 2018/2 (Sheldrick, 2018) 

Function minimized Σ w(Fo2 - Fc2)2 

Data / restraints / parameters 6080 / 0 / 416 

Final R indices 

5164 data; I > 2σ(I) R1 = 0.0402, wR2 = 0.0942 

 

all data                     R1 = 0.0514, wR2 = 0.1008 

Weighting scheme 

w = 1/[σ2(Fo2) + (0.0400P)2 + 7.1188P] 

 

where P = (Fo2 + 2Fc2)/3 

Δ/σmax 0.001 

Goodness-of-fit on F2 1.060 

Largest diff. peak and hole 1.125 and -0.687 eÅ-3 

R.M.S. deviation from mean 0.094 eÅ-3 
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Single Crystal X-Ray Structure Determination of Compound 4 (CCDC 2253558). 

 

 

Figure S73. ORTEP style plot of compound 4 in the solid state (CCDC 2253558). Ellipsoids are drawn 

at the 50% probability level. Hydrogen atoms are omitted for clarity. Selected bond lengths [Å] and 

angles [°]: Ru1-C31 2.0514(13), Ru1-N1 2.1104(11), Ru1-O2 2.2160(9), Ru1-P2 2.2271(4), Ru1-O1 

2.2453(10), Ru1-P1 2.2635(4), C31-Ru1-N1 79.34(5), C31-Ru1-O2 103.49(4), N1-Ru1-O2 83.25(4), 

C31-Ru1-P2 86.49(4), N1-Ru1-P2 92.80(3), O2-Ru1-P2 168.31(3), C31-Ru1-O1 158.95(4), N1-Ru1-

O1 86.57(4), O2-Ru1-O1 58.97(3), P2-Ru1-O1 109.94(3), C31-Ru1-P1 100.24(4), N1-Ru1-P1 

171.64(3), O2-Ru1-P1 88.77(3), P2-Ru1-P1 95.510(13), O1-Ru1-P1 91.44(3). 
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Single Crystal X-Ray Structure Determination of Compound 4 (CCDC 2253558) 

 

Detailed Crystallographic Data. 

 

Diffractometer operator:   A. A. Heidecker 

Scanspeed     1-4 s per frame  

dx      40 mm  

Frames:     3904 measured in 13 XYZ data sets  

phi-scans with delta phi   -0.5/1.0  

omega-scans with delta omega  -0.5/0.5 

 

Crystal Data: 

 

Chemical formula [C39H39NO3P2Ru] Density (calculated) = 1.478 g/cm3 

Formula weight 732.72 Absorption coefficient = 0.613 mm-1 

monoclinic, P 21/n Mo Kα radiation, λ = 0.71073 Å 

a = 9.8933(6) Å             α = 90° Cell parameters from 209391 reflections 

b = 17.5880(9) Å           β = 91.121(2)°  θ = 2.15-27.88° 

c = 18.9275(12) Å         γ = 90° T = 100(2) K 

V = 3292.8(3) Å3 clear yellow fragment 

Z = 4 0.190 x 0.202 x 0.377 mm 

F(000) = 1512  

 

Data collection: 

 

Bruker D8 Venture Duo IMS  

diffractometer 
7838 independent reflections 

Radiation source: TXS rotating anode 7478 reflections with I > 2σ(F2) 

Helios optic monochromator Rint = 0.0340 

Theta range for data collection θmax = 27.88°, θmin = 2.15° 

Index ranges -13<=h<=13, -23<=k<=23, -24<=l<=24 

Absorption correction Multi-Scan, SADABS 2016/2, Bruker 
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209391 measured reflections Coverage of independent reflections = 100.0% 

 

Data refinement: 

 

Refinement method Full-matrix least-squares on F2 

Refinement program SHELXL-2018/3 (Sheldrick, 2018) 

Structure solution technique direct methods 

Structure solution program SHELXT 2018/2 (Sheldrick, 2018) 

Function minimized Σ w(Fo2 - Fc2)2 

Data / restraints / parameters 7838 / 0 / 416 

Final R indices 

7478 data; I > 2σ(I) R1 = 0.0204, wR2 = 0.0509 

 

all data                     R1 = 0.0218, wR2 = 0.0519 

Weighting scheme 

w = 1/[σ2(Fo2) + (0.0213P)2 + 2.8079P] 

 

where P = (Fo2 + 2Fc2)/3 

Δ/σmax 0.001 

Goodness-of-fit on F2 1.050 

Largest diff. peak and hole 0.369 and -0.466 eÅ-3 

R.M.S. deviation from mean 0.053 eÅ-3 
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Figure S74. Cell viability measured by MTT assay of Astrocytes (A) and U87 MG cells (B) treated with 

Temozolomide (TMZ) for 72 h. 
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