## Catalysis Science \& Technology

## Cyclometallated C^N Diphosphine Ruthenium Catalysts for Oppenauer-Type Oxidation / Transfer Hydrogenation Reactions and Cytotoxic Activity

Dario Alessi, ${ }^{\text {a }}$ Pierfrancesco del Mestre, ${ }^{\text {b }}$ Eleonora Aneggi, ${ }^{a}$ Maurizio Ballico, ${ }^{\text {a }}$ Antonio P. Beltrami ${ }^{\text {b }}$, Marta Busato, ${ }^{\text {a }}$ Daniela Cesselli, ${ }^{\mathrm{b}}$ Alexandra Heidecker, ${ }^{\text {c }}$ Daniele Zuccaccia, ${ }^{\text {a }}$ and Walter Baratta ${ }^{\mathrm{a}}$ *
${ }^{a}$ Dipartimento di Scienze Agroalimentari, Ambientali e Animali, Università di Udine, Via Cotonificio 108, I-33100 Udine, Italy
${ }^{b}$ Dipartimento di Area Medica - Istituto di Genetica Medica, Università di Udine, Via Chiusaforte, F3, I-33100 Udine, Italy
${ }^{c}$ Inorganic Chemistry/Molecular Catalysis, Department of Chemistry \& Catalysis Research Center, TUM, Lichtenbergstraße 4, 85747 Garching b. München, Germany

## Supporting Information

## Table of Contents:

Scheme S1. NMR numbering scheme of the $C^{\wedge} N$ ligands a-d in the $\left[R u\left(C^{\wedge} N\right)\left(\eta^{2}-O A c\right)(d p p b)\right]$ complexes

Pag. S7
Figure S1. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\left[\mathrm{Ru}(\mathbf{a})\left(\eta^{2}-\mathrm{OAc}\right)(\mathrm{dppb})\right](\mathbf{1})$
Pag. S7
Figure $\mathbf{S 2}$. ${ }^{1} \mathrm{H}$ NMR spectrum of $\left[\operatorname{Ru}(\mathbf{a})\left(\eta^{2}-\mathrm{OAc}\right)(\mathrm{dppb})\right](\mathbf{1})$
Pag. S8
Figure S3. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ DEPTQ NMR spectrum of $\left[\mathrm{Ru}(\mathbf{a})\left(\eta^{2}-\mathrm{OAc}\right)(\mathrm{dppb})\right](\mathbf{1})$
Pag. S9
Figure S4. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY 2D NMR spectrum of $\left[\mathrm{Ru}(\mathbf{a})\left(\eta^{2}-\mathrm{OAc}\right)(\mathrm{dppb})\right](\mathbf{1})$
Figure S5. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY 2D NMR spectrum of $\left[\mathrm{Ru}(\mathbf{a})\left(\eta^{2}-\mathrm{OAc}\right)(\mathrm{dppb})\right](\mathbf{1})$
Pag. S11
Figure S6. ${ }^{1} \mathrm{H}-{ }^{31} \mathrm{P}$ HMBC 2D NMR spectrum of $\left[\operatorname{Ru}(\mathbf{a})\left(\eta^{2}-\mathrm{OAc}\right)(\mathrm{dppb})\right](\mathbf{1}) \quad$ Pag. S12

Figure S7. ${ }^{1} \mathrm{H}-{ }^{31} \mathrm{C}$ HMBC 2D NMR spectrum of $\left[\mathrm{Ru}(\mathbf{a})\left(\eta^{2}-\mathrm{OAc}\right)(\mathrm{dppb})\right](\mathbf{1})$

Pag. S13
Pag. S14
Pag. S15
Pag. S16
Pag. S17
Pag. S18
Pag. S19
Pag. S20
Pag. S21
Pag. S22
Pag. S23
Pag. S24
Pag. S25
Pag. S26
Pag. S27
Pag. S28
Pag. S29
Pag. S30
Pag. S31
Pag. S32
Pag. S33
Pag. S34
Pag. S35
Pag. S36
Pag. S37

Figure S32. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\left[\mathrm{Ru}(\mathbf{b})\left(\eta^{2}-\mathrm{HCOO}\right)(\mathrm{dppb})\right](5)$
Pag. S38
Figure S33. ${ }^{1} \mathrm{H}$ NMR spectrum of $\left[\operatorname{Ru}(\mathbf{b})\left(\eta^{2}-\mathrm{HCOO}\right)(\mathrm{dppb})\right](5) \quad$ Pag. S39
Figure S34. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ DEPTQ NMR spectrum of $\left[\mathrm{Ru}(\mathbf{b})\left(\eta^{2}-\mathrm{HCOO}\right)(\mathrm{dppb})\right](5) \quad$ Pag. S40
Figure S35. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H} \operatorname{COSY} 2 \mathrm{D}$ NMR spectrum of $\left[\mathrm{Ru}(\mathbf{b})\left(\eta^{2}-\mathrm{HCOO}\right)(\mathrm{dppb})\right](5) \quad$ Pag. S41
Figure S36. ${ }^{1} \mathrm{H}-{ }^{31} \mathrm{P}$ HMBC 2D NMR spectrum of $\left[\mathrm{Ru}(\mathbf{b})\left(\eta^{2}-\mathrm{HCOO}\right)(\mathrm{dppb})\right](5) \quad$ Pag. S42
Figure S37. ${ }^{1} \mathrm{H}-{ }^{31} \mathrm{C}$ HMBC 2D NMR spectrum of $\left[\mathrm{Ru}(\mathbf{b})\left(\eta^{2}-\mathrm{HCOO}\right)(\mathrm{dppb})\right](5) \quad$ Pag. S43
Figure S38. ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC 2D NMR spectrum of $\left[\mathrm{Ru}(\mathbf{b})\left(\eta^{2}-\mathrm{HCOO}\right)(\mathrm{dppb})\right](5) \quad$ Pag. S44
Figure S39. Evidence of $\mathrm{H}_{2}$ formation from the decomposition of HCOOH promoted by $\left[\mathrm{Ru}(\mathbf{b})\left(\eta^{2}-\right.\right.$ OAc)(dppb)] (2) in the ${ }^{1} \mathrm{H}$ NMR spectra ( 400.1 MHz ) in toluene- $d^{8}$ Pag. S45

Figure S40. Evidence of formation of ruthenium monohydride species after treatment of $\left[\operatorname{Ru}(\mathbf{d})\left(\eta^{2}-\right.\right.$ $\mathrm{OAc})(\mathrm{dppb})]$ (4) with NaOiPr (2 equiv) at reflux in the ${ }^{1} \mathrm{H}$ NMR spectrum in $i \operatorname{PrOH} /$ toluene- $d^{8}(4: 1(\mathrm{v} / \mathrm{v}))$

Pag. S46
Figure S41. GC-FID chromatogram of the reaction mixture of the catalytic TH of 4'-methylacetophenone promoted by complex 3 Pag. S47

Figure S42. GC-FID chromatogram of the reaction mixture of the catalytic TH of 2'-methylacetophenone promoted by complex 3

Pag. S48
Figure S43. GC-FID chromatogram of the reaction mixture of the catalytic Oppenauer-type oxidation of rac- $\alpha$-tetralol promoted by complex $\mathbf{1}$

Pag. S49
General Procedure for the Oppenauer-type oxidation of secondary alcohols
Pag. S50
Figure S44. ${ }^{1} \mathrm{H}$ NMR spectrum of $\alpha$-tetralone obtained from catalytic Oppenauer-type oxidation of $\alpha$ tetralol

Pag. S53
Figure S45. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ DEPTQ NMR spectrum of $\alpha$-tetralone obtained from catalytic Oppenauer-type oxidation of $\alpha$-tetralol

Pag. S54
Figure S46. ${ }^{1}$ H NMR spectrum of benzophenone obtained from catalytic Oppenauer-type oxidation of benzhydrol

Pag. S55

Figure S47. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ DEPTQ NMR spectrum of benzophenone obtained from catalytic Oppenauer-type oxidation of benzhydrol

Pag. S56
Figure S48. ${ }^{1} \mathrm{H}$ NMR spectrum of 4'-methylacetophenone obtained from catalytic Oppenauer-type oxidation of 1-(p-tolyl)ethanol

Pag. S57
Figure S49. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ DEPTQ NMR spectrum of 4 '-methylacetophenone obtained from catalytic Oppenauer-type oxidation of 1-(p-tolyl)ethanol Pag. S58

Figure S50. ${ }^{1} \mathrm{H}$ NMR spectrum of propiophenone obtained from catalytic Oppenauer-type oxidation of 1-phenyl-1-propanol

Pag. S59
Figure S51. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ DEPTQ NMR spectrum of propiophenone obtained from catalytic Oppenauertype oxidation of 1-phenyl-1-propanol

Pag. S60
Figure S52. ${ }^{1} \mathrm{H}$ NMR spectrum of 2-heptanone obtained from catalytic Oppenauer-type oxidation of 2heptanol Pag. S61

Figure S53. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ DEPTQ NMR spectrum of 2-heptanone obtained from catalytic Oppenauer-type oxidation of 2-heptanol

Pag. S62
Figure S54. ${ }^{1} \mathrm{H}$ NMR spectrum of $(1 R)-(+)$-camphor obtained from catalytic Oppenauer-type oxidation of (1R)-(+)-borneol Pag. S63

Figure S55. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ DEPTQ NMR spectrum of $(1 R)$-(+)-camphor obtained from catalytic Oppenauertype oxidation of (1R)-(+)-borneol

Pag. S64

## General Procedure for the catalytic transfer hydrogenation (TH) of carbonyl compounds

Pag. S65
Figure S56. ${ }^{1} \mathrm{H}$ NMR spectrum of 1-Phenylethanol obtained from catalytic TH of acetophenone
Pag. S68
Figure S57. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ DEPTQ NMR spectrum of 1-Phenylethanol obtained from catalytic TH of acetophenone

Pag. S69
Figure S58. ${ }^{1} \mathrm{H}$ NMR spectrum of 1-(o-tolyl)ethanol obtained from catalytic TH of 2'methylacetophenone

Pag. S70

Figure S59. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ DEPTQ NMR spectrum of 1-(o-tolyl)ethanol obtained from catalytic TH of 2'methylacetophenone

Pag. S71
Figure S60. ${ }^{1} \mathrm{H}$ NMR spectrum ( 400.1 MHz ) of 1-( $p$-tolyl)ethanol obtained from catalytic TH of $\mathbf{4}^{\prime}$ methylacetophenone Pag. S72

Figure S61. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ DEPTQ NMR spectrum of 1-( $p$-tolyl)ethanol obtained from catalytic TH of 4'methylacetophenone Pag. S73

Figure S62. ${ }^{1} \mathrm{H}$ NMR spectrum of 1-(2'-methoxy-phenyl)ethanol obtained from catalytic TH of 2'methoxyacetophenone

Pag. S74
Figure S63. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ DEPTQ NMR spectrum of 1-(2'-methoxy-phenyl)ethanol obtained from catalytic TH of 2'-methoxyacetophenone Pag. S75

Figure S64. ${ }^{1} \mathrm{H}$ NMR spectrum of benzhydrol obtained from catalytic TH of benzophenone
Pag. S76
Figure S65. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ DEPTQ NMR spectrum of benzhydrol obtained from catalytic TH of benzophenone

Pag. S77
Figure S66. ${ }^{1} \mathrm{H}$ NMR spectrum of cyclohexanol obtained from catalytic TH of cyclohexanone
Pag. S78
Figure S67. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ DEPTQ NMR spectrum of cyclohexanol obtained from catalytic TH of cyclohexanone

Pag. S79
Figure S68. ${ }^{1} \mathrm{H}$ NMR spectrum of benzyl alcohol obtained from catalytic TH of benzaldehyde
Pag. S80
Figure S69. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ DEPTQ NMR spectrum of benzyl alcohol obtained from catalytic TH of benzaldehyde

Pag. S81

## Single Crystal X-Ray Structure Determination of Compounds 1-4 (CCDC 2253558-2253561).

General Data
Pag. S82
Figure S70. ORTEP style plot of compound $\mathbf{1}$ in the solid state (CCDC 2253559)
Pag. S83
Single Crystal X-Ray Structure Determination of Compound 1 (CCDC 2253559). DetailedCrystallographic DataPag. S84
Figure S71. ORTEP style plot of compound 2 in the solid state (CCDC 2253561) ..... Pag. S86Single Crystal X-Ray Structure Determination of Compound 2 (CCDC 2253561). DetailedCrystallographic DataPag. S87
Figure S72. ORTEP style plot of compound $\mathbf{3}$ in the solid state (CCDC 2253560) ..... Pag. S89
Single Crystal X-Ray Structure Determination of Compound 3 (CCDC 2253560). DetailedCrystallographic DataPag. S90
Figure S73. ORTEP style plot of compound 4 in the solid state (CCDC 2253558) ..... Pag. S92
Single Crystal X-Ray Structure Determination of Compound 4 (CCDC 2253558). DetailedCrystallographic DataPag. S93
Figure S74. Cell viability measured by MTT assay of Astrocytes (A) and U87 MG cells (B) treated with


Scheme S1: $\mathrm{C}^{\wedge} \mathrm{N}$ ligands a-d in the $\left[\mathrm{Ru}\left(\mathrm{C}^{\wedge} \mathrm{N}\right)\left(\eta^{2}-\mathrm{OAc}\right)(\mathrm{dppb})\right]$ complexes.


Figure S1. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum $(162.0 \mathrm{MHz})$ of $\left[\mathrm{Ru}(\mathbf{a})\left(\eta^{2}-\mathrm{OAc}\right)(\mathrm{dppb})\right](\mathbf{1})$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at $25{ }^{\circ} \mathrm{C}$.


Figure S2. ${ }^{1} \mathrm{H}$ NMR spectrum $(400.1 \mathrm{MHz})$ of $\left[\mathrm{Ru}(\mathbf{a})\left(\eta^{2}-\mathrm{OAc}\right)(\mathrm{dppb})\right](\mathbf{1})$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at $25{ }^{\circ} \mathrm{C}$.


Figure S3. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ DEPTQ NMR spectrum $(100.6 \mathrm{MHz})$ of $\left[\mathrm{Ru}(\mathbf{a})\left(\eta^{2}-\mathrm{OAc}\right)(\mathrm{dppb})\right](\mathbf{1})$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at $25^{\circ} \mathrm{C}$.


Figure S4. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY 2D NMR spectrum of $\left[\mathrm{Ru}(\mathbf{a})\left(\eta^{2}-\mathrm{OAc}\right)(\mathrm{dppb})\right](\mathbf{1})$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at $25^{\circ} \mathrm{C}$.


Figure S5. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY 2D NMR spectrum of $\left[\mathrm{Ru}(\mathbf{a})\left(\eta^{2}-\mathrm{OAc}\right)(\mathrm{dppb})\right](\mathbf{1})$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at $25{ }^{\circ} \mathrm{C}$.


Figure S6. ${ }^{1} \mathrm{H}-{ }^{31} \mathrm{P}$ HMBC 2D NMR spectrum of $\left[\mathrm{Ru}(\mathbf{a})\left(\eta^{2}-\mathrm{OAc}\right)(\mathrm{dppb})\right](\mathbf{1})$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at $25{ }^{\circ} \mathrm{C}$.


Figure S7. ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMBC 2D NMR spectrum of $\left[\mathrm{Ru}(\mathbf{a})\left(\eta^{2}-\mathrm{OAc}\right)(\mathrm{dppb})\right](\mathbf{1})$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at $25{ }^{\circ} \mathrm{C}$.


Figure S8. ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC 2D NMR spectrum of $\left[\mathrm{Ru}(\mathbf{a})\left(\eta^{2}-\mathrm{OAc}\right)(\mathrm{dppb})\right](\mathbf{1})$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at $25{ }^{\circ} \mathrm{C}$.


Figure S9. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum $(162.0 \mathrm{MHz})$ of $\left[\mathrm{Ru}(\mathbf{b})\left(\eta^{2}-\mathrm{OAc}\right)(\mathrm{dppb})\right](\mathbf{2})$ in toluene- $d^{8}$ at $25{ }^{\circ} \mathrm{C}$.


Figure S10. ${ }^{1} \mathrm{H}$ NMR spectrum $(400.1 \mathrm{MHz})$ of $\left[\operatorname{Ru}(\mathbf{b})\left(\eta^{2}-\mathrm{OAc}\right)(\mathrm{dppb})\right](\mathbf{2})$ in toluene- $d^{8}$ at $25^{\circ} \mathrm{C}$.


Figure S11. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ DEPTQ NMR spectrum $(100.6 \mathrm{MHz})$ of $\left[\mathrm{Ru}(\mathbf{b})\left(\eta^{2}-\mathrm{OAc}\right)(\mathrm{dppb})\right](\mathbf{2})$ in toluene$d^{8}$ at $25^{\circ} \mathrm{C}$.


Figure S12. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY 2D NMR spectrum of $\left[\mathrm{Ru}(\mathbf{b})\left(\eta^{2}-\mathrm{OAc}\right)(\mathrm{dppb})\right](\mathbf{2})$ in toluene- $d^{8}$ at $25{ }^{\circ} \mathrm{C}$.


Figure S13. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY 2D NMR spectrum of $\left[\operatorname{Ru}(\mathbf{b})\left(\eta^{2}-\mathrm{OAc}\right)(\mathrm{dppb})\right](\mathbf{2})$ in toluene- $d^{8}$ at $25{ }^{\circ} \mathrm{C}$.


Figure S14. ${ }^{1} \mathrm{H}-{ }^{31} \mathrm{P}$ HMBC 2D NMR spectrum of $\left[\mathrm{Ru}(\mathbf{b})\left(\eta^{2}-\mathrm{OAc}\right)(\mathrm{dppb})\right](2)$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at $25{ }^{\circ} \mathrm{C}$.


Figure S15. ${ }^{1} \mathrm{H}^{13} \mathrm{H}$ HSQC 2D NMR spectrum of $\left[\mathrm{Ru}(\mathbf{b})\left(\eta^{2}-\mathrm{OAc}\right)(\mathrm{dppb})\right](\mathbf{2})$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at $25{ }^{\circ} \mathrm{C}$.


Figure S16. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum $(162.0 \mathrm{MHz})$ of $\left[\mathrm{Ru}(\mathbf{c})\left(\eta^{2}-\mathrm{OAc}\right)(\mathrm{dppb})\right](\mathbf{3})$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at $25{ }^{\circ} \mathrm{C}$.



Figure S17. ${ }^{1} \mathrm{H}$ NMR spectrum $(400.1 \mathrm{MHz})$ of $\left[\mathrm{Ru}(\mathbf{c})\left(\eta^{2}-\mathrm{OAc}\right)(\mathrm{dppb})\right](\mathbf{3})$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at $25^{\circ} \mathrm{C}$.


Figure S18. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ DEPTQ NMR spectrum $(100.6 \mathrm{MHz})$ of $\left[\mathrm{Ru}(\mathbf{c})\left(\eta^{2}-\mathrm{OAc}\right)(\mathrm{dppb})\right](\mathbf{3})$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at $25^{\circ} \mathrm{C}$.


Figure S19. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY 2D NMR spectrum of $\left[\mathrm{Ru}(\mathbf{c})\left(\eta^{2}-\mathrm{OAc}\right)(\mathrm{dppb})\right](\mathbf{3})$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at $25^{\circ} \mathrm{C}$.


Figure S20. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY 2D NMR spectrum of $\left.\left[\mathrm{Ru}(\mathbf{c})\left(\eta^{2}-\mathrm{OAc}\right)(\mathrm{dppb})\right](\mathbf{3})\right)$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at $25{ }^{\circ} \mathrm{C}$.


Figure S21. ${ }^{1} \mathrm{H}-{ }^{31} \mathrm{P}$ HMBC 2D NMR spectrum of $\left[\mathrm{Ru}(\mathbf{c})\left(\eta^{2}-\mathrm{OAc}\right)(\mathrm{dppb})\right](\mathbf{3})$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at $25{ }^{\circ} \mathrm{C}$.


Figure S22. ${ }^{1} \mathrm{H}_{-}{ }^{13} \mathrm{C}$ HMBC 2D NMR spectrum of $\left[\mathrm{Ru}(\mathbf{c})\left(\eta^{2}-\mathrm{OAc}\right)(\mathrm{dppb})\right](\mathbf{3})$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at $25^{\circ} \mathrm{C}$.


Figure S23. ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC 2D NMR spectrum of $\left[\mathrm{Ru}(\mathbf{c})\left(\eta^{2}-\mathrm{OAc}\right)(\mathrm{dppb})\right](\mathbf{3})$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at $25{ }^{\circ} \mathrm{C}$.


Figure S24. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum $(162.0 \mathrm{MHz})$ of $\left[\mathrm{Ru}(\mathbf{d})\left(\eta^{2}-\mathrm{OAc}\right)(\mathrm{dppb})\right](4)$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at 25 ${ }^{\circ} \mathrm{C}$.


Figure S25. ${ }^{1} \mathrm{H}$ NMR spectrum $(400.1 \mathrm{MHz})$ of $\left[\mathrm{Ru}(\mathbf{d})\left(\eta^{2}-\mathrm{OAc}\right)(\mathrm{dppb})\right](4)$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at $25{ }^{\circ} \mathrm{C}$.


Figure S26. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ DEPTQ NMR spectrum ( 100.6 MHz ) of $\left[\mathrm{Ru}(\mathbf{d})\left(\eta^{2}-\mathrm{OAc}\right)(\mathrm{dppb})\right](4)$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at $25^{\circ} \mathrm{C}$.


Figure S27. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY 2D NMR spectrum of $\left[\mathrm{Ru}(\mathbf{d})\left(\eta^{2}-\mathrm{OAc}\right)(\mathrm{dppb})\right](4)$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at $25^{\circ} \mathrm{C}$.


Figure S28. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY 2D NMR spectrum of $\left[\mathrm{Ru}(\mathbf{d})\left(\eta^{2}-\mathrm{OAc}\right)(\mathrm{dppb})\right](4)$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at $25{ }^{\circ} \mathrm{C}$.


Figure S29. ${ }^{1} \mathrm{H}_{-}{ }^{31} \mathrm{P}$ HMBC 2D NMR spectrum of $\left[\mathrm{Ru}(\mathbf{d})\left(\eta^{2}-\mathrm{OAc}\right)(\mathrm{dppb})\right](4)$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at $25^{\circ} \mathrm{C}$.


Figure S30. ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMBC 2D NMR spectrum of $\left[\mathrm{Ru}(\mathbf{d})\left(\eta^{2}-\mathrm{OAc}\right)(\mathrm{dppb})\right](4)$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at $25^{\circ} \mathrm{C}$.


Figure S31. ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC 2D NMR spectrum of $\left[\mathrm{Ru}(\mathbf{d})\left(\eta^{2}-\mathrm{OAc}\right)(\mathrm{dppb})\right](4)$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at $25^{\circ} \mathrm{C}$.


Figure S32. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum $(162.0 \mathrm{MHz})$ of $\left[\mathrm{Ru}(\mathbf{b})\left(\eta^{2}-\mathrm{HCOO}\right)(\mathrm{dppb})\right](5)$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at 25 ${ }^{\circ} \mathrm{C}$.


Figure S33. ${ }^{1} \mathrm{H}$ NMR spectrum $(400.1 \mathrm{MHz})$ of $\left[\mathrm{Ru}(\mathbf{b})\left(\eta^{2}-\mathrm{HCOO}\right)(\mathrm{dppb})\right](5)$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at $25^{\circ} \mathrm{C}$.


Figure S34. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ DEPTQ NMR spectrum $(100.6 \mathrm{MHz})$ of $\left[\mathrm{Ru}(\mathbf{b})\left(\eta^{2}-\mathrm{HCOO}\right)(\mathrm{dppb})\right](\mathbf{5})$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at $25^{\circ} \mathrm{C}$.


Figure S35. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY 2D NMR spectrum of $\left[\mathrm{Ru}(\mathbf{b})\left(\eta^{2}-\mathrm{HCOO}\right)(\mathrm{dppb})\right](4)$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at $25^{\circ} \mathrm{C}$.


Figure S36. ${ }^{1} \mathrm{H}-{ }^{31} \mathrm{P}$ HMBC 2D NMR spectrum of $\left[\mathrm{Ru}(\mathbf{b})\left(\eta^{2}-\mathrm{HCOO}\right)(\mathrm{dppb})\right](5)$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at $25^{\circ} \mathrm{C}$.


Figure S37. ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMBC 2D NMR spectrum of $\left[\mathrm{Ru}(\mathbf{b})\left(\eta^{2}-\mathrm{HCOO}\right)(\mathrm{dppb})\right](5)$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at $25{ }^{\circ} \mathrm{C}$.


Figure S38. ${ }^{1} \mathrm{H}^{-13} \mathrm{C}$ HSQC 2D NMR spectrum of $\left[\mathrm{Ru}(\mathbf{b})\left(\eta^{2}-\mathrm{HCOO}\right)(\mathrm{dppb})\right](5)$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at $25{ }^{\circ} \mathrm{C}$.


Figure S39. Evidence of $\mathrm{H}_{2}$ formation from the decomposition of HCOOH promoted by $\left[\mathrm{Ru}(\mathbf{b})\left(\eta^{2}-\right.\right.$ OAc)(dppb)] (2) in the ${ }^{1} \mathrm{H}$ NMR spectra ( 400.1 MHz ) in toluene- $d^{8}$.


Figure S40. Evidence of formation of ruthenium monohydride species after treatment of $\left[\operatorname{Ru}(\mathbf{d})\left(\eta^{2}-\right.\right.$ $\mathrm{OAc})(\mathrm{dppb})$ ] (4) with NaOiPr (2 equiv) at reflux in the ${ }^{1} \mathrm{H}$ NMR spectrum ( 400.1 MHz ) in $i \mathrm{PrOH} /$ toluene$d^{8}(4: 1(\mathrm{v} / \mathrm{v}))$.


Figure S41. GC-FID chromatogram of the reaction mixture of the catalytic TH of 4'-methylacetophenone in 2-propanol at reflux and $\mathrm{NaOiPr} 2 \mathrm{~mol} \%$ promoted by complex 3 at $\mathrm{S} / \mathrm{C} 1000$ after 30 min. GC analyses were performed with a Varian CP-3380 gas chromatograph equipped with a 25 m length MEGADEX-ETTBDMS- $\beta$ chiral column with hydrogen ( 5 psi ) as the carrier gas and flame ionization detector (FID). The injector and detector temperature was $250^{\circ} \mathrm{C}$, with initial $\mathrm{T}=95^{\circ} \mathrm{C}$ ramped to $140^{\circ} \mathrm{C}$ at $3^{\circ} \mathrm{C} / \mathrm{min}$, then to $210^{\circ} \mathrm{C}$ at $30^{\circ} \mathrm{C} / \mathrm{min}$, which is maintained for other 3 min . for a total of 20 min of analysis.


Figure S42. GC-FID chromatogram of the reaction mixture of the catalytic TH of 2'-methylacetophenone in 2-propanol at reflux and $\mathrm{NaOi} \operatorname{Pr} 2 \mathrm{~mol} \%$ promoted by complex 3 at $\mathrm{S} / \mathrm{C} 1000$ after 30 min. GC analyses were performed with a Varian CP-3380 gas chromatograph equipped with a 25 m length MEGADEX-ETTBDMS- $\beta$ chiral column with hydrogen ( 5 psi ) as the carrier gas and flame ionization detector (FID). The injector and detector temperature was $250^{\circ} \mathrm{C}$, with initial $\mathrm{T}=95^{\circ} \mathrm{C}$ ramped to $140^{\circ} \mathrm{C}$ at $3^{\circ} \mathrm{C} / \mathrm{min}$, then to $210^{\circ} \mathrm{C}$ at $30^{\circ} \mathrm{C} / \mathrm{min}$, which is maintained for other 3 min . for a total of 20 min of analysis.


Figure S43. GC-FID chromatogram of the reaction mixture of the catalytic Oppenauer-type oxidation of $r a c$ - $\alpha$-tetralol in toluene at reflux with $\mathrm{KO} t \mathrm{Bu} 5 \mathrm{~mol} \%$ and in presence of acetone ( 10 equiv) promoted by complex 1 at S/C 1000 after 20 min . GC analyses were performed with a Varian CP-3380 gas chromatograph equipped with a 25 m length MEGADEX-ETTBDMS- $\beta$ chiral column with hydrogen ( 5 psi ) as the carrier gas and flame ionization detector (FID). The injector and detector temperature was $250{ }^{\circ} \mathrm{C}$, with initial $\mathrm{T}=125^{\circ} \mathrm{C}$ ramped to $155^{\circ} \mathrm{C}$ at $2^{\circ} \mathrm{C} / \mathrm{min}$, then to $195^{\circ} \mathrm{C}$ at $20^{\circ} \mathrm{C} / \mathrm{min}$, which is maintained for other 3 min . for a total of 20 min of analysis.

## General Procedure for the Oppenauer-type oxidation of secondary alcohols

The ruthenium catalyst solutions used for these reactions were prepared by dissolving the complexes ( $\mathbf{1}$ 4, $2 \mu \mathrm{~mol}$ ) in toluene ( 2 mL ). The alcohol substrate ( 1.0 mmol ) was dissolved in toluene ( 8.26 mL (when acetone was used as proton acceptor) or 8.38 mL (when cyclohexanone was used), and the catalyst solution ( $1.0 \mathrm{~mL}, 1.0 \mu \mathrm{~mol}$ ) and $\mathrm{KOtBu}(5.6 \mathrm{mg}, 0.05 \mathrm{mmol})$ were added. After heating at reflux, acetone ( $740 \mu \mathrm{~L}, 580 \mathrm{mg}, 10 \mathrm{mmol}$ ) or cyclohexanone ( $621 \mu \mathrm{~L}, 588.8 \mathrm{mg}, 6.0 \mathrm{mmol}$ ) were added (final volume 10 mL ). The reaction was sampled by removing an aliquot of the reaction mixture, which was quenched by addition of diethyl ether ( $1: 1 \mathrm{v} / \mathrm{v}$ ), filtered over a short silica pad and submitted to GC analysis. The ketone addition was considered as the start time of the reaction. The S/C molar ratio was $1000 / 1$, whereas the base concentration was $5 \mathrm{~mol} \%$ respect to the alcohol substrates $(0.1 \mathrm{M})$. The same procedure was followed for the Oppenauer-type oxidation reactions with different S/C (250-1000), using the appropriate amount of catalyst.

For the isolation of ketones with $\mathbf{4}$, the final mixture was filtered over a short silica pad and condensed under reduced pressure. The crude residue was dissolved with diethyl ether ( 5 mL ) and the organic layer washed with a diluted solution of $\mathrm{HCl}(0.1 \mathrm{M} ; 3 \times 3 \mathrm{~mL})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent gently evaporated, affording the ketone products. In some cases, it was necessary to use a purification by flash silica gel column chromatography, using petroleum/ethyl acetate as eluent, to obtain the final products (yields: 44-95\%). (1R)-(+)-camphor, on the other hand, was purified through a sublimation process. All compounds were characterized by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR.

## $\boldsymbol{\alpha}$-Tetralone: ${ }^{1}$

Clear amber oily liquid; yield: $95 \%$.
${ }^{1} \mathrm{H}$ NMR ( $400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$ ): $\delta=7.96$ (dd, ${ }^{3} \mathrm{JHH}_{\mathrm{HH}}=7.7 \mathrm{~Hz},{ }^{4} J_{\mathrm{HH}}=1.3 \mathrm{~Hz}, 1 \mathrm{H}$; aromatic proton), $7.40\left(\mathrm{dd},{ }^{3} J_{\mathrm{HH}}=7.4 \mathrm{~Hz},{ }^{4} J_{\mathrm{HH}}=1.4 \mathrm{~Hz}, 1 \mathrm{H}\right.$; aromatic proton), $7.22\left(\mathrm{t},{ }^{3} J_{\mathrm{HH}}=7.6 \mathrm{~Hz}, 1 \mathrm{H}\right.$; aromatic proton), $7.17\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.8 \mathrm{~Hz}, 1 \mathrm{H}\right.$; aromatic proton), $2.87\left(\mathrm{t},{ }^{3} \mathrm{JHH}_{\mathrm{HH}}=6.0 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}\right), 2.56\left(\mathrm{t},{ }^{3} J_{\mathrm{HH}}\right.$ $\left.=6.6 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}\right), 2.04 \mathrm{ppm}\left(\mathrm{m}, 2 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}\right)$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}$ ): $\delta=198.3$ ( $\mathrm{s} ; \mathrm{CO}$ ), 144.5 ( s ; aromatic ipso carbon), 133.4 ( s ; aromatic carbon atom), 132.6 ( s ; aromatic ipso carbon), 128.8 ( s ; aromatic carbon atom), 127.1 ( s ; aromatic carbon atom), 126.6 ( s ; aromatic carbon atom), 39.1 ( $\mathrm{s} ; \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}$ ), 29.6 ( s ; $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}$ ), $23.3 \mathrm{ppm}\left(\mathrm{s} ; \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}\right.$ ).

## Benzophenone: ${ }^{2}$

White crystals; m.p. $47-49{ }^{\circ} \mathrm{C}\left(47-49{ }^{\circ} \mathrm{C}\right.$, lit.); yield: $71 \%$.
${ }^{1} \mathrm{H}$ NMR ( $400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$ ): $\delta=7.75\left(\mathrm{dd},{ }^{3} J_{\mathrm{HH}}=8.3 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{\mathrm{HH}}=1.2 \mathrm{~Hz}, 4 \mathrm{H}\right.$; aromatic protons), $7.52\left(\mathrm{tt},{ }^{3} J_{\mathrm{HH}}=7.3 \mathrm{~Hz},{ }^{4} J_{\mathrm{HH}}=1.4 \mathrm{~Hz}, 2 \mathrm{H}\right.$; aromatic protons), $7.41 \mathrm{ppm}\left(\mathrm{t},{ }^{3} J_{\mathrm{HH}}=7.7 \mathrm{~Hz}, 4 \mathrm{H}\right.$; aromatic protons);
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}$ ): $\delta=196.8$ ( $\mathrm{s} ; \mathrm{CO}$ ), 137.6 ( s ; aromatic ipso carbons), 132.5 ( s ; aromatic carbon atoms), 130.1 ( s ; aromatic carbon atoms), 128.3 ppm ( s ; aromatic carbon atoms).

## 4'-Methylacetophenone: ${ }^{3}$

Colorless liquid; yield: $94 \%$.
${ }^{1} \mathrm{H}$ NMR ( $400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}$ ): $\delta=7.85\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8.3 \mathrm{~Hz}, 2 \mathrm{H}\right.$; aromatic protons), $7.24\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=\right.$ $8.3 \mathrm{~Hz}, 2 \mathrm{H}$; aromatic protons), $2.56\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{COCH}_{3}\right), 2.39 \mathrm{ppm}\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$;
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}$ ): $\delta=197.8$ ( $\mathrm{s} ; \mathrm{CO}$ ), 143.9 ( s ; aromatic ipso carbon), 134.7 ( s ; aromatic ipso carbon), 129.2 ( s ; aromatic carbon atoms), 128.4 ( s ; aromatic carbon atoms), 26.5 ( s ; $\mathrm{COCH}_{3}$ ), $21.6 \mathrm{ppm}\left(\mathrm{s} ; \mathrm{CH}_{3}\right)$.

## Propiophenone: ${ }^{2}$

Colorless liquid; yield: $75 \%$.
${ }^{1} \mathrm{H}$ NMR ( $400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$ ): $\delta=7.84(\mathrm{~m}, 2 \mathrm{H}$; aromatic protons), $7.44-7.39(\mathrm{~m}, 1 \mathrm{H}$; aromatic proton), $7.32\left(\mathrm{~m}, 2 \mathrm{H}\right.$; aromatic protons), $2.86\left(\mathrm{q},{ }^{3} J_{\mathrm{HH}}=7.3 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.10 \mathrm{ppm}\left(\mathrm{t},{ }^{3} J_{\mathrm{HH}}=7.3\right.$ $\mathrm{Hz}, 3 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{CH}_{3}$ );
${ }^{3} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$ ): $\delta=200.7(\mathrm{~s} ; \mathrm{CO}), 136.9$ ( s ; aromatic ipso carbon), $132.8(\mathrm{~s} ;$ aromatic carbon atom), 128.5 ( s ; aromatic carbon atom), 127.9 ( s ; aromatic carbon atom), 31.7 ( s ; $\mathrm{CH}_{2} \mathrm{CH}_{3}$ ), $8.2 \mathrm{ppm}\left(\mathrm{s} ; \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$.

## 2-heptanone: ${ }^{4}$

Colorless liquid; yield: $83 \%$.
${ }^{1} \mathrm{H}$ NMR ( $400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$ ): $\delta=2.41\left(\mathrm{t},{ }^{3} \mathrm{JHH}_{\mathrm{HH}}=7.1 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{COCH}_{3}\right), 2.12\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{COCH}_{3}\right)$, $1.55\left(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}\right), 1.27\left(\mathrm{~m}, 4 \mathrm{H} ; \mathrm{CH}_{2}\right), 0.89 \mathrm{ppm}\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6.5 \mathrm{~Hz}, 3 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$.
${ }^{3} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}$ ): $\delta=209.4$ ( $\mathrm{s} ; \mathrm{CO}$ ), 43.9 ( $\mathrm{s} ; \mathrm{CH}_{2} \mathrm{COCH}_{3}$ ), 31.2 ( $\mathrm{s} ;$ $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}$ ), $29.9\left(\mathrm{~s} ; \mathrm{COCH}_{3}\right), 22.8\left(\mathrm{~s} ; \mathrm{CH}_{2}\right), 22.6\left(\mathrm{~s} ; \mathrm{CH}_{2}\right), 13.9 \mathrm{ppm}\left(\mathrm{s} ; \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$.

## (1R)-(+)-camphor: ${ }^{5}$

Colorless solid; m.p. $176^{\circ} \mathrm{C}\left(175-177^{\circ} \mathrm{C}\right.$, lit.); yield: $44 \%$.
${ }^{1} \mathrm{H}$ NMR ( $400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}$ ): $\delta=2.26\left(\mathrm{dt},{ }^{2} J_{\mathrm{HH}}=18.2 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=3.9 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{CO}\right), 2.00(\mathrm{t}$, $\left.{ }^{3} J_{\mathrm{HH}}=4.5 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CMe}_{2}\right) \mathrm{CH}_{2}\right), 1.86\left(\mathrm{ddt},{ }^{2} J_{\mathrm{HH}}=12.1 \mathrm{~Hz},{ }^{2} J_{\mathrm{HH}}=7.8 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=3.5 \mathrm{~Hz}, 1 \mathrm{H}\right.$; $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CMe}_{2}\right)\right), 1.75\left(\mathrm{~d},{ }^{2} J_{\mathrm{HH}}=18.2 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{CO}\right), 1.59\left(\mathrm{td},{ }^{2} J_{\mathrm{HH}}=12.1 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=11.0 \mathrm{~Hz}\right.$, $\left.{ }^{3} J_{\mathrm{HH}}=3.3 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{CH}_{2}(\mathrm{CMe})\right), 1.38-1.16\left(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{CH}_{2}(\mathrm{CMe})\right), 0.87\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.82(\mathrm{~s}$, $\left.3 \mathrm{H} ; \mathrm{CH}_{3}\right), 0.75 \mathrm{ppm}\left(\mathrm{s}, 3 \mathrm{H} ; \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$ ).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$ ): $\delta=219.7$ ( $\mathrm{s} ; \mathrm{CO}$ ), 57.7 ( $\mathrm{s} ; \mathrm{CMe}_{2}$ ), 46.8 (s; CMe), 43.3 (s; $\mathrm{CH}_{2} \mathrm{CO}$ ), $43.0\left(\mathrm{~s} ; \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CMe}_{2}\right) \mathrm{CH}_{2}\right)$, 29.9 ( $\mathrm{s} ; \mathrm{CH}_{2}(\mathrm{CMe})$ ), 27.1 ( $\left.\mathrm{s} ; \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CMe}_{2}\right) \mathrm{CH}_{2}\right), 19.8$ ( $\mathrm{s} ;$ $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $19.2\left(\mathrm{~s} ; \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 9.3 \mathrm{ppm}\left(\mathrm{s} ; \mathrm{C}\left(\mathrm{CH}_{3}\right)\right)$.


Figure S44. ${ }^{1} \mathrm{H}$ NMR spectrum ( 400.1 MHz ) of $\alpha$-tetralone obtained from catalytic Oppenauer-type oxidation of $\alpha$-tetralol in $\mathrm{CDCl}_{3}$ at $25^{\circ} \mathrm{C}$.


Figure S45. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ DEPTQ NMR spectrum ( 100.6 MHz ) of $\alpha$-tetralone obtained from catalytic Oppenauer-type oxidation of $\alpha$-tetralol in $\mathrm{CDCl}_{3}$ at $25^{\circ} \mathrm{C}$.


Figure S46. ${ }^{1} \mathrm{H}$ NMR spectrum ( 400.1 MHz ) of benzophenone obtained from catalytic Oppenauer-type oxidation of benzhydrol in $\mathrm{CDCl}_{3}$ at $25^{\circ} \mathrm{C}$.


Figure S47. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ DEPTQ NMR spectrum ( 100.6 MHz ) of benzophenone obtained from catalytic Oppenauer-type oxidation of benzhydrol in $\mathrm{CDCl}_{3}$ at $25^{\circ} \mathrm{C}$.


Figure S48. ${ }^{1} \mathrm{H}$ NMR spectrum ( 400.1 MHz ) of 4 '-methylacetophenone obtained from catalytic Oppenauer-type oxidation of 1-(p-tolyl)ethanol in $\mathrm{CDCl}_{3}$ at $25^{\circ} \mathrm{C}$.


Figure S49. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ DEPTQ NMR spectrum ( 100.6 MHz ) of 4'-methylacetophenone obtained from catalytic Oppenauer-type oxidation of 1-(p-tolyl)ethanol in $\mathrm{CDCl}_{3}$ at $25^{\circ} \mathrm{C}$.


Figure S50. ${ }^{1} \mathrm{H}$ NMR spectrum ( 400.1 MHz ) of propiophenone obtained from catalytic Oppenauer-type oxidation of 1-phenyl-1-propanol in $\mathrm{CDCl}_{3}$ at $25^{\circ} \mathrm{C}$.


Figure S51. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ DEPTQ NMR spectrum ( 100.6 MHz ) of propiophenone obtained from catalytic Oppenauer-type oxidation of 1-phenyl-1-propanol in $\mathrm{CDCl}_{3}$ at $25^{\circ} \mathrm{C}$.


Figure S52. ${ }^{1} \mathrm{H}$ NMR spectrum ( 400.1 MHz ) of 2-heptanone obtained from catalytic Oppenauer-type oxidation of 2-heptanol in $\mathrm{CDCl}_{3}$ at $25^{\circ} \mathrm{C}$.


Figure S53. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ DEPTQ NMR spectrum ( 100.6 MHz ) of 2-heptanone obtained from catalytic Oppenauer-type oxidation of 2-heptanol in $\mathrm{CDCl}_{3}$ at $25^{\circ} \mathrm{C}$.


Figure S54. ${ }^{1} \mathrm{H}$ NMR spectrum ( 400.1 MHz ) of ( $1 R$ )-(+)-camphor obtained from catalytic Oppenauertype oxidation of $(1 R)$-(+)-borneol in $\mathrm{CDCl}_{3}$ at $25^{\circ} \mathrm{C}$.


Figure S55. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ DEPTQ NMR spectrum ( 100.6 MHz ) of $(1 R)-(+)$-camphor obtained from catalytic Oppenauer-type oxidation of $(1 R)-(+)$-borneol in $\mathrm{CDCl}_{3}$ at $25^{\circ} \mathrm{C}$.

## General Procedure for the catalytic transfer hydrogenation (TH) of carbonyl compounds

The ruthenium catalyst solutions used for the catalytic TH were prepared by dissolving the complexes (1-4, $2 \mu \mathrm{~mol}$ ) in 2-propanol ( 2 mL ). The catalyst solution ( $1.0 \mathrm{~mL}, 1.0 \mu \mathrm{~mol}$ ) and a 0.1 M solution of $\mathrm{NaOiPr}(200 \mu \mathrm{~L}, 20 \mu \mathrm{~mol})$ in 2-propanol were added subsequently to the carbonyl substrate ( 1.0 mmol ) dissolved in 2-propanol (final volume 10 mL ), and the mixture was heated at reflux. The reaction was sampled by removing an aliquot of the reaction mixture, which was quenched by addition of diethyl ether ( $1: 1 \mathrm{v} / \mathrm{v}$ ), filtered over a short silica pad and submitted to GC analysis. The base addition was considered as the start time of the reaction. The S/C molar ratio was 1000/1, whereas the base concentration was $2 \mathrm{~mol} \%$ respect to the carbonyl substrates $(0.1 \mathrm{M})$. The same procedure was followed for the TH reactions with different $\mathrm{S} / \mathrm{C}$ (1000-10000), using the appropriate amount of catalyst.

For the isolation of alcohols with $\mathbf{4}$, the final mixture was filtered over a short silica pad and evaporated under reduced pressure. The crude residue was dissolved with diethyl ether ( 5 mL ) and the organic layer washed with a diluted solution of $\mathrm{HCl}(0.1 \mathrm{M} ; 3 \times 5 \mathrm{~mL})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent gently evaporated, affording the alcohol products (yields: 72-94\%). In some cases, it was necessary to use a purification by flash silica gel column chromatography, using petroleum ether $40-60{ }^{\circ} \mathrm{C} /$ ethyl acetate or chloroform/methanol as eluents, to obtain the final products. All compounds were characterized by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR.

## 1-Phenylethanol: ${ }^{6}$

Colorless liquid; Yield, 94\%.
${ }^{1} \mathrm{H}$ NMR ( $400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}$ ): $\delta=7.34-7.19\left(\mathrm{~m}, 5 \mathrm{H}\right.$; aromatic protons), $4.78\left(\mathrm{q},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6.5 \mathrm{~Hz}\right.$, $1 \mathrm{H} ; \mathrm{CHCH}_{3}$ ), $2.79(\mathrm{~s}, 1 \mathrm{H} ; \mathrm{OH}), 1.41 \mathrm{ppm}\left(\mathrm{d},{ }^{3} J_{\mathrm{HH}}=6.5 \mathrm{~Hz}, 3 \mathrm{H} ; \mathrm{CHCH}_{3}\right) ;$
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}$ ): $\delta=146.0$ (s; aromatic ipso carbon), 128.5 (s; aromatic carbon atom), 127.4 ( s ; aromatic carbon atom), 125.5 ( s ; aromatic carbon atom), 70.3 ( $\mathrm{s} ; \mathrm{CHCH}_{3}$ ), 25.2 ppm (s; $\mathrm{CHCH}_{3}$ ).

## 1-(o-tolyl)ethanol: ${ }^{6 \mathrm{~b}, \mathrm{c}}$

Colorless oil; Yield, 91\%.
${ }^{1} \mathrm{H}$ NMR ( $400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$ ): $\delta=7.46$ (dd, ${ }^{3} \mathrm{~J}_{H H}=7.7 \mathrm{~Hz},{ }^{4} J_{H H}=1.0 \mathrm{~Hz}, 1 \mathrm{H}$; aromatic proton), 7.28-7.04 (m, 3H; aromatic protons), $5.02\left(\mathrm{q},{ }^{3} J_{H H}=6.4,1 \mathrm{H} ; \mathrm{CHCH}_{3}\right), 2.87(\mathrm{~s}, 1 \mathrm{H} ; \mathrm{OH}), 2.29(\mathrm{~s}, 3 \mathrm{H} ;$ $\left.\mathrm{CH}_{3}\right), 1.40 \mathrm{ppm}\left(\mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6.4 \mathrm{~Hz}, 3 \mathrm{H} ; \mathrm{CHCH}_{3}\right)$;
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$ ): $\delta=144.0$ ( s ; aromatic ipso carbon), 134.2 (s; aromatic ipso carbon), 130.4 ( s ; aromatic carbon atom), 127.1 ( s ; aromatic carbon atom), 126.4 ( s ; aromatic carbon atom), 124.7 ( s ; aromatic carbon atom), $66.7\left(\mathrm{~s} ; \mathrm{CHCH}_{3}\right), 24.0\left(\mathrm{~s} ; \mathrm{CHCH}_{3}\right), 19.0 \mathrm{ppm}\left(\mathrm{s} ; \mathrm{CH}_{3}\right)$.

## 1-(p-tolyl)ethan-1-ol: $\mathbf{: c}^{6 c, 7}$

Colorless oil; Yield, 89\%.
${ }^{1} \mathrm{H}$ NMR ( $400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$ ): $\delta=7.21$ ( $\mathrm{d},{ }^{3} \mathrm{~J}_{H H}=8.1 \mathrm{~Hz}, 2 \mathrm{H}$; aromatic protons), $7.12\left(\mathrm{~d},{ }^{3} J_{H H}=\right.$ $8.1 \mathrm{~Hz}, 2 \mathrm{H}$; aromatic protons), $4.76\left(\mathrm{q},{ }^{3} \mathrm{~J}_{H H}=6.5,1 \mathrm{H} ; \mathrm{CHCH}_{3}\right), 2.96(\mathrm{~s}, 1 \mathrm{H} ; \mathrm{OH}), 2.33\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{CH}_{3}\right)$, $1.42 \mathrm{ppm}\left(\mathrm{d},{ }^{3}{ }^{\mathrm{HH}}=6.5 \mathrm{~Hz}, 3 \mathrm{H} ; \mathrm{CHCH}_{3}\right)$;
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$ ): $\delta=143.1$ ( s ; aromatic ipso carbon), 136.9 ( s ; aromatic ipso carbon), 129.1 ( s ; aromatic carbon atoms), 125.5 ( s ; aromatic carbon atoms), $70.0\left(\mathrm{~s} ; \mathrm{CHCH}_{3}\right), 25.2(\mathrm{~s} ;$ $\mathrm{CHCH}_{3}$ ), $21.1 \mathrm{ppm}\left(\mathrm{s} ; \mathrm{CH}_{3}\right)$.

## 1-(2'-Methoxyphenyl)ethanol: ${ }^{\text {6a, } 8}$

Colorless oil; Yield, $92 \%$.
${ }^{1} \mathrm{H}$ NMR ( $400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$ ): $\delta=7.31$ (dd, ${ }^{3} J_{H H}=7.5 \mathrm{~Hz},{ }^{4} J_{H H}=1.7 \mathrm{~Hz}, 1 \mathrm{H}$; aromatic proton), $7.18\left(\mathrm{td},{ }^{3} J_{H H}=8.0 \mathrm{~Hz},{ }^{4} J_{H H}=1.7 \mathrm{~Hz}, 1 \mathrm{H}\right.$; aromatic proton), $6.90\left(\mathrm{td},{ }^{3} J_{H H}=7.5 \mathrm{~Hz},{ }^{4} J_{H H}=0.9 \mathrm{~Hz}, 1 \mathrm{H}\right.$; aromatic proton), $6.80\left(\mathrm{~d},{ }^{3} J_{H H}=8.0 \mathrm{~Hz}, 1 \mathrm{H}\right.$; aromatic proton), $5.05\left(\mathrm{q},{ }^{3} J_{H H}=6.5 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{CHCH}_{3}\right)$, $3.76\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{OCH}_{3}\right), 3.11(\mathrm{~s}, 1 \mathrm{H} ; \mathrm{OH}), 1.42 \mathrm{ppm}\left(\mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6.5 \mathrm{~Hz}, 3 \mathrm{H} ; \mathrm{CHCH}_{3}\right)$;
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$ ): $\delta=156.4$ ( s ; aromatic ipso carbon), 133.8 ( s ; aromatic ipso carbon), 128.2 ( s ; aromatic carbon atom), 126.0 ( s ; aromatic carbon atom), 120.8 ( s ; aromatic carbon atom), 110.4 ( s ; aromatic carbon atom), $66.0\left(\mathrm{~s} ; \mathrm{CHCH}_{3}\right), 55.2\left(\mathrm{~s} ; \mathrm{OCH}_{3}\right), 23.1 \mathrm{ppm}\left(\mathrm{s} ; \mathrm{CHCH}_{3}\right)$

## Benzhydrol (Diphenylmethanol): ${ }^{6 c}$

White crystals; m.p. $68^{\circ} \mathrm{C}\left(69^{\circ} \mathrm{C}\right.$, lit.) ; Yield, $90 \%$.
${ }^{1} \mathrm{H}$ NMR ( $400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$ ): $\delta=7.44-7.34(\mathrm{~m}, 8 \mathrm{H}$; aromatic protons), 7.32-7.27 (m, 2 H ; aromatic protons), $5.87\left(\mathrm{~d},{ }^{3} J_{H H}=3.5 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{CHOH}\right), 2.28 \mathrm{ppm}\left(\mathrm{d},{ }^{3} J_{H H}=3.5 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{OH}\right)$; ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}$ ): $\delta=143.8$ (s; aromatic ipso carbons), 128.5 (s; aromatic carbon atoms), 127.6 ( s ; aromatic carbon atoms), 126.6 ( s ; aromatic carbon atoms), $76.3 \mathrm{ppm}(\mathrm{s} ; \mathrm{CHOH})$.

## Cyclohexanol: ${ }^{7}$

Colorless oil; Yield, 95\%.
${ }^{1} \mathrm{H}$ NMR ( $400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}$ ): $\delta=3.57\left(\mathrm{tt},{ }^{3} J_{H H}=8.8 \mathrm{~Hz},{ }^{3} J_{H H}=4.2 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{CHOH}\right.$ ), $2.00(\mathrm{~s}$, $\left.1 \mathrm{H} ; \mathrm{OH}), 1.90-1.82\left(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{CHOH}\right), 1.75-1.65 \mathrm{~m}, 2 \mathrm{H} ; \mathrm{CH}_{2}\right), 1.56-1.47\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{CH}_{2}\right), 1.31-1.07$ ppm (m, 5H; $\mathrm{CH}_{2}$ );
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}$ ): $\delta=70.3$ (s; CHOH ), 35.5 (s; $\mathrm{CH}_{2} \mathrm{CHOH}$ ), $25.5\left(\mathrm{~s} ; \mathrm{CH}_{2}\right)$, $24.1 \mathrm{ppm}\left(\mathrm{s} ; \mathrm{CH}_{2}\right)$.

## Benzyl alcohol: ${ }^{7,9}$

Colorless liquid; Yield, $72 \%$.
${ }^{1} \mathrm{H}$ NMR ( $400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$ ): $\delta=7.35-7.22\left(\mathrm{~m}, 5 \mathrm{H}\right.$; aromatic protons), $4.55\left(\mathrm{br} \mathrm{s}, 2 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{OH}\right)$, $2.98 \mathrm{ppm}(\mathrm{br} \mathrm{s}, 1 \mathrm{H} ; \mathrm{OH})$;
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}$ ): $\delta=141.0$ ( s ; aromatic ipso carbon), 128.6 (s; aromatic carbon atoms), 127.6 ( s ; aromatic carbon atoms), 127.1 ( s ; aromatic carbon atoms), 65.0 ppm ( s ; $\left.\mathrm{CH}_{2} \mathrm{OH}\right)$.


Figure S56. ${ }^{1} \mathrm{H}$ NMR spectrum ( 400.1 MHz ) of 1-Phenylethanol obtained from catalytic TH of acetophenone in $\mathrm{CDCl}_{3}$ at $25^{\circ} \mathrm{C}$.


Figure S57. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum ( 100.6 MHz ) of 1-Phenylethanol obtained from catalytic TH of acetophenone in $\mathrm{CDCl}_{3}$ at $25^{\circ} \mathrm{C}$.


Figure S58. ${ }^{1} \mathrm{H}$ NMR spectrum ( 400.1 MHz ) of 1-(o-tolyl)ethanol obtained from catalytic TH of 2'methylacetophenone in $\mathrm{CDCl}_{3}$ at $25^{\circ} \mathrm{C}$.


Figure S59. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum ( 100.6 MHz ) of 1-(o-tolyl)ethanol obtained from catalytic TH of 2'-methylacetophenone in $\mathrm{CDCl}_{3}$ at $25^{\circ} \mathrm{C}$.


Figure S60. ${ }^{1} \mathrm{H}$ NMR spectrum ( 400.1 MHz ) of 1-( $p$-tolyl)ethanol obtained from catalytic TH of 4'methylacetophenone in $\mathrm{CDCl}_{3}$ at $25^{\circ} \mathrm{C}$.


Figure S61. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum (100.6 MHz) of 1-(p-tolyl)ethanol obtained from catalytic TH of $4^{\prime}$-methylacetophenone in $\mathrm{CDCl}_{3}$ at $25^{\circ} \mathrm{C}$.


Figure S62. ${ }^{1} \mathrm{H}$ NMR spectrum ( 400.1 MHz ) of 1-(2'-methoxy-phenyl)ethanol obtained from catalytic TH of 2'-methoxyacetophenone in $\mathrm{CDCl}_{3}$ at $25^{\circ} \mathrm{C}$.


Figure S63. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum ( 100.6 MHz ) of 1-( $2^{\prime}$-methoxy-phenyl)ethanol obtained from catalytic TH of $2^{\prime}$-methox yacetophenone in $\mathrm{CDCl}_{3}$ at $25^{\circ} \mathrm{C}$.


Figure S64. ${ }^{1}$ H NMR spectrum ( 400.1 MHz ) of benzhydrol obtained from catalytic TH of benzophenone in $\mathrm{CDCl}_{3}$ at $25^{\circ} \mathrm{C}$.


Figure S65. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum ( 100.6 MHz ) of benzhydrol obtained from catalytic TH of benzophenone in $\mathrm{CDCl}_{3}$ at $25^{\circ} \mathrm{C}$.


Figure S66. ${ }^{1} \mathrm{H}$ NMR spectrum ( 400.1 MHz ) of cyclohexanol obtained from catalytic TH of cyclohexanone in $\mathrm{CDCl}_{3}$ at $25^{\circ} \mathrm{C}$.


Figure S67. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ spectrum ( 100.6 MHz ) of cyclohexanol obtained from catalytic TH of cyclohexanone in $\mathrm{CDCl}_{3}$ at $25^{\circ} \mathrm{C}$.


Figure S68. ${ }^{1} \mathrm{H}$ NMR spectrum ( 400.1 MHz ) of benzyl alcohol obtained from catalytic TH of benzaldehyde in $\mathrm{CDCl}_{3}$ at $25^{\circ} \mathrm{C}$.


Figure S69. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum ( 100.6 MHz ) of benzyl alcohol obtained from catalytic TH of benzaldehyde in $\mathrm{CDCl}_{3}$ at $25^{\circ} \mathrm{C}$.

## Single Crystal X-Ray Structure Determination of Compounds 1-4 (CCDC 2253558-2253561)

## General Data

X-ray diffraction data were collected at 100 K on an X-ray single crystal diffractometer equipped with a CPAD detector (Bruker Photon-II CPAD), an IMS microsource with MoK $_{\alpha}$ radiation ( $\lambda=0.71073 \AA$ ) and a Helios optic using the APEX4 software package. ${ }^{10}$ Measurements were performed on a single crystal coated with perfluorinated ether and the crystal was fixed on top of a Kapton micro sampler, transferred to the diffractometer and frozen under a stream of cold nitrogen. A matrix scan was used to determine the initial lattice parameters. Reflections were merged and corrected for Lorenz and polarization effects, scan speed and background using SAINT. ${ }^{11}$ Absorption corrections, including odd and even ordered spherical harmonics were performed using SADABS. ${ }^{11}$ Based on systematic absences, E-statistics and successful refinement of the structures, the space group was assigned. The structures were solved by direct methods with the aid of successive difference Fourier maps, and were refined against all data using APEX4 software with SHELXL in conjunction with SHELXLE. ${ }^{12-14}$ Full-matrix least-squares refinements were carried out by minimizing $\Sigma w\left(\mathrm{~F}_{0}^{2}-\mathrm{F}_{\mathrm{c}}^{2}\right)^{2}$ with the SHELXL weighting scheme. ${ }^{12}$ All non-hydrogen atoms were refined using anisotropic displacement parameters and hydrogen atoms were calculated in ideal positions with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C})$. Neutral atom scattering factors for all atoms and anomalous dispersion corrections for the non-hydrogen atoms were taken from International Tables for Crystallography. ${ }^{15}$ Structural illustrations were generated with Mercury and Platon. 21 for Windows. ${ }^{16,17}$ CCDC 2253558-2253561 contain the supplementary crystallographic data for this paper. These data are provided free of charge by The Cambridge Crystallographic Data Centre.

## Single Crystal X-Ray Structure Determination of Compound 1 (CCDC 2253559).



Figure S70. ORTEP style plot of compound $\mathbf{1}$ in the solid state (CCDC 2253559). Ellipsoids are drawn at the $50 \%$ probability level. Hydrogen atoms are omitted for clarity. Selected bond lengths $[\AA]$ and angles [ ${ }^{\circ}$ ]: Ru1-N1 2.1030(16), Ru1-C13 2.0342(18), Ru1-O2 2.2242(13), Ru1-P1 2.2292(5), Ru1-O1 2.2582(13), Ru1-P2 2.2814(5), C13-Ru1-N1 79.89(7), C13-Ru1-O2 102.61(6), N1-Ru1-O2 83.18(5), C13-Ru1-P1 86.15(5), N1-Ru1-P1 91.65(4), O2-Ru1-P1 168.81(4), C13-Ru1-O1 158.30(6), N1-Ru1O1 86.67(6), O2-Ru1-O1 58.57(5), P1-Ru1-O1 111.37(4), C13-Ru1-P2 101.34(5), N1-Ru1-P2 172.56(4), O2-Ru1-P2 89.40(4), P1-Ru1-P2 95.747(18), O1-Ru1-P2 89.90(4).

## Single Crystal X-Ray Structure Determination of Compound 1 (CCDC 2253559).

## Detailed Crystallographic Data.

Diffractometer operator:
Scanspeed
dx
Frames:
phi-scans with delta phi
omega-scans with delta omega

```
A. A. Heidecker
1-3 s per frame
40 mm
2109 measured in 8 XYZ data sets
0.5/1.0
0 . 5
```

Crystal Data:

Chemical formula [ $\mathrm{C}_{41} \mathrm{H}_{39} \mathrm{NO}_{2} \mathrm{P}_{2} \mathrm{Ru}$ ]
Formula weight 740.74
monoclinic, $\underline{P 21 / n}$
$a=\underline{9.8638(10)} \AA \quad \alpha=90^{\circ}$
$b=\underline{17.891(2)} \AA \quad \beta=90.761(4)^{\circ}$
$c=\underline{19.013(2)} \AA \quad \gamma=90^{\circ}$
$V=\underline{3355.0(6)} \AA^{3}$
$Z=\underline{4}$
$F(000)=\underline{1528}$

Density $($ calculated $)=\underline{1.467} \mathrm{~g} / \mathrm{cm}^{3}$
Absorption coefficient $=\underline{0.601} \mathrm{~mm}^{-1}$
Mo K radiation, $\lambda=\underline{0.71073} \AA$
Cell parameters from $\underline{106782}$ reflections
$\theta=\underline{2.28}-\underline{27.48^{\circ}}$
$T=\underline{100(2)} \mathrm{K}$
clear orange fragment
$\underline{0.050 \times 0.164 \times 0.222 \mathrm{~mm}}$

Data collection:

## Bruker D8 Venture Duo IMS

diffractometer
Radiation source: TXS rotating anode
Helios optic monochromator
Theta range for data collection
Index ranges
Absorption correction
$\underline{6956}$ reflections with $\underline{I>2 \sigma\left(\mathrm{~F}^{2}\right)}$
$\underline{7691}$ independent reflections
$R_{\text {int }}=\underline{0.0769}$
$\theta_{\max }=\underline{27.48^{\circ}}, \theta_{\min }=\underline{2.28^{\circ}}$
$\underline{-12}<=\mathrm{h}<=\underline{12}, \underline{-23}<=\mathrm{k}<=\underline{23}, \underline{-24}<=1<=\underline{24}$
Multi-Scan, $\underline{S A D A B S ~ 2016 / 2, ~ B r u k e r ~}$

Max. and min. transmission:
$\underline{106782}$ measured reflections

## Data refinement:

Refinement method
Refinement program
Structure solution technique
Structure solution program
Function minimized
Data / restraints / parameters

Final R indices
Weighting scheme
$\Delta / \boldsymbol{\sigma}_{\text {max }}$
Goodness-of-fit on $\mathrm{F}^{2}$
Largest diff. peak and hole
R.M.S. deviation from mean
0.7043 and 0.6692

Coverage of independent reflections $=99.9 \%$

Full-matrix least-squares on $\mathrm{F}^{2}$
SHELXL-2018/3 (Sheldrick, 2018)
direct methods
SHELXT 2018/2 (Sheldrick, 2018)
$\Sigma \mathrm{w}\left(\mathrm{Fo}^{2}-\mathrm{Fc}^{2}\right)^{2}$
7691 / $0 / 425$
6956 data; $\mathrm{I}>2 \sigma(\mathrm{I}) \mathrm{R} 1=0.0273, \mathrm{wR} 2=0.0676$
all data $\quad \mathrm{R} 1=0.0320, \mathrm{wR} 2=0.0704$
$\mathrm{w}=1 /\left[\sigma^{2}\left(\mathrm{Fo}^{2}\right)+(0.0262 \mathrm{P})^{2}+3.6827 \mathrm{P}\right]$
where $\mathrm{P}=\left(\mathrm{Fo}^{2}+2 \mathrm{Fc}^{2}\right) / 3$
0.001
1.041
0.449 and $-0.464 \mathrm{e}^{-3}$
$\underline{0.069} \mathrm{e}^{-3}$

## Single Crystal X-Ray Structure Determination of Compound 2 (CCDC 2253561).



Figure S71. ORTEP style plot of compound $\mathbf{2}$ in the solid state (CCDC 2253561). Ellipsoids are drawn at the $50 \%$ probability level. Hydrogen atoms are omitted for clarity. Selected bond lengths $[\AA]$ and angles [ ${ }^{\circ}$ ]: Ru1-C15 2.040(3), Ru1-N1 2.115(3), Ru1-P2A 2.201(3), Ru1-O1 2.209(2), Ru1-P1 2.2338(8), Ru1-O2 2.237(2), Ru1-P2B 2.348(3), C15-Ru1-N1 80.84(12), C15-Ru1-P2A 105.26(13), N1-Ru1-P2A 171.13(10), C15-Ru1-O1 104.13(11), N1-Ru1-O1 83.62(10), P2A-Ru1-O1 88.59(10), C15-Ru1-P1 83.76(8), N1-Ru1-P1 92.51(8), P2A-Ru1-P1 94.53(8), O1-Ru1-P1 170.46(8), C15-Ru1O2 159.86(10), N1-Ru1-O2 85.91(10), P2A-Ru1-O2 86.46(11), O1-Ru1-O2 59.07(10), P1-Ru1-O2 112.06(8), C15-Ru1-P2B 96.00(12), N1-Ru1-P2B 169.52(11), O1-Ru1-P2B 87.51(10), P1-Ru1-P2B 97.09(7), O2-Ru1-P2B 94.32(10).

## Single Crystal X-Ray Structure Determination of Compound 2 (CCDC 2253561)

## Detailed Crystallographic Data.

Diffractometer operator:
Scanspeed
dx
Frames:
phi-scans with delta phi
omega-scans with delta omega
A. A. Heidecker

1-8 s per frame
40 mm
3689 measured in 12 XYZ data sets
0.5/1.0
0.5

Crystal Data:

Chemical formula [ $\mathrm{C}_{43} \mathrm{H}_{39} \mathrm{NO}_{2} \mathrm{P}_{2} \mathrm{Ru}$ ]
Formula weight $\underline{764.76}$
$\underline{\text { monoclinic, }} \boldsymbol{C 2 / \mathrm { c }}$
$a=\underline{29.656(5)} \AA \quad \alpha=90^{\circ}$
$b=\underline{9.7750(17)} \AA \quad \beta=106.902(5)^{\circ}$
$c=\underline{25.141(4)} \AA \quad \gamma=90^{\circ}$
$V=\underline{6973.2(19)} \AA^{3}$
$Z=\underline{8}$
$F(000)=\underline{3152}$

Density $($ calculated $)=\underline{1.457} \mathrm{~g} / \mathrm{cm}^{3}$
Absorption coefficient $=\underline{0.581} \mathrm{~mm}^{-1}$
Mo K Ka ratiation, $\lambda=\underline{0.71073} \AA$
Cell parameters from $\underline{188606}$ reflections
$\theta=\underline{1.88}-\underline{27.48^{\circ}}$
$T=\underline{100(2)} \mathrm{K}$
clear light yellow-orange plate
$\underline{0.030 \times 0.132 \times 0.398} \mathrm{~mm}$
$\underline{8003}$ independent reflections
$\underline{7248}$ reflections with $\underline{I>2 \sigma\left(\mathrm{~F}^{2}\right)}$
$R_{\text {int }}=\underline{0.0966}$
$\theta_{\max }=\underline{27.48^{\circ}}, \theta_{\min }=\underline{1.88^{\circ}}$
$\underline{-38}<=\mathrm{h}<=\underline{38}, \underline{-12}<=\mathrm{k}<=\underline{12}, \underline{-32}<=1<=\underline{32}$

Absorption correction

Max. and min. transmission:
188606 measured reflections

Data refinement:

Refinement method
Refinement program
Structure solution technique
Structure solution program
Function minimized
Data / restraints / parameters

Final R indices

Weighting scheme
$\Delta / \boldsymbol{\sigma}_{\text {max }}$
Goodness-of-fit on $\mathrm{F}^{2}$
Largest diff. peak and hole
R.M.S. deviation from mean

Multi-Scan, $\underline{\text { SADABS 2016/2, Bruker }}$
0.9830 and 0.8020

Coverage of independent reflections $=100.0 \%$

Full-matrix least-squares on $\mathrm{F}^{2}$
SHELXL-2018/3 (Sheldrick, 2018)
direct methods
SHELXT 2018/2 (Sheldrick, 2018)
$\Sigma \mathrm{w}\left(\mathrm{Fo}^{2}-\mathrm{Fc}^{2}\right)^{2}$
8003 / 277 / 587
$\underline{7248}$ data; $\mathrm{I}>2 \sigma(\mathrm{I}) \mathrm{R} 1=0.0501, \mathrm{wR} 2=0.0926$
all data $\mathrm{R} 1=0.0571, \mathrm{wR} 2=0.0955$
$\mathrm{w}=1 /\left[\sigma^{2}\left(\mathrm{Fo}^{2}\right)+39.9662 \mathrm{P}\right]$
where $\mathrm{P}=\left(\mathrm{Fo}^{2}+2 \mathrm{Fc}^{2}\right) / 3$
$\underline{0.001}$
1.214
0.436 and $-1.068 \mathrm{e}^{-3}$
$\underline{0.087} \mathrm{e}^{\AA^{-3}}$

## Single Crystal X-Ray Structure Determination of Compound 3 (CCDC 2253560)



Figure S72. ORTEP style plot of compound $\mathbf{3}$ in the solid state (CCDC 2253560). Ellipsoids are drawn at the $50 \%$ probability level. Hydrogen atoms are omitted for clarity. Selected bond lengths [ $\AA$ ] and angles [ ${ }^{\circ}$ ]: Ru1-C3 2.054(4), Ru1-N2 2.084(3), Ru1-P1 2.2282(10), Ru1-O2 2.233(2), Ru1-O1 2.247(2), Ru1-P2 2.2756(10), Ru1-C1 2.581(4), P1-C12 1.834(3), C3-Ru1-N2 79.56(13), C3-Ru1-P1 85.38(10), N2-Ru1-P1 92.22(8), C3-Ru1-O2 103.57(11), N2-Ru1-O2 83.44(10), P1-Ru1-O2 169.09(7), C3-Ru1O1 158.67(11), N2-Ru1-O1 86.02(10), P1-Ru1-O1 110.99(7), O2-Ru1-O1 58.84(9), C3-Ru1-P2 101.12(10), N2-Ru1-P2 171.92(8), P1-Ru1-P2 95.85(3), O2-Ru1-P2 88.59(7), O1-Ru1-P2 91.01(7).

## Single Crystal X-Ray Structure Determination of Compound 3 (CCDC 2253560)

## Detailed Crystallographic Data.

Diffractometer operator:
Scanspeed
dx
Frames:
phi-scans with delta phi
omega-scans with delta omega
A. A. Heidecker

1-10 s per frame
40 mm
1673 measured in 8 XYZ data sets
0.5/1.0
$-0.5 / 0.5$

Crystal Data:

Chemical formula $\left[\mathrm{C}_{39} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{P}_{2} \mathrm{Ru}\right]$
Formula weight $\underline{729.72}$
Monoclinic, $\underline{P 21 / n}$

$$
\begin{array}{ll}
a=\underline{9.845(2)} \AA & \alpha=90^{\circ} \\
b=\underline{17.644(4)} \AA & \beta=90.757(7)^{\circ} \\
c=\underline{19.132(4)} \AA & \gamma=90^{\circ} \\
V=\underline{3323.0(12)} \AA^{3} & \\
Z=\underline{4} & \\
F(000)=\underline{1504} &
\end{array}
$$

Density $($ calculated $)=\underline{1.459} \mathrm{~g} / \mathrm{cm}^{3}$ Absorption coefficient $=\underline{0.606} \mathrm{~mm}^{-1}$ Mo K radiation, $\lambda=\underline{0.71073} \AA$ Cell parameters from $\underline{58152}$ reflections $\theta=\underline{2.13}-\underline{25.36^{\circ}}$ $T=\underline{100(2)} \mathrm{K}$ clear green rectangle $0.081 \times 0.089 \times 0.105 \mathrm{~mm}$ $\underline{6080}$ independent reflections $\underline{5164}$ reflections with $\underline{I>2 \sigma\left(\mathrm{~F}^{2}\right)}$
$R_{\text {int }}=\underline{0.0920}$
$\theta_{\max }=\underline{25.36^{\circ}}, \theta_{\min }=\underline{2.13}^{\circ}$
$\underline{-11}<=\mathrm{h}<=\underline{11}, \underline{-21}<=\mathrm{k}<=\underline{21}, \underline{-21}<=\mathrm{l}<=\underline{23}$
Multi-Scan, $\underline{S A D A B S}$ 2016/2, Bruker

## Data refinement:

Refinement method
Refinement program
Structure solution technique
Structure solution program
Function minimized
Data / restraints / parameters

Final R indices

Weighting scheme
$\Delta / \boldsymbol{\sigma}_{\text {max }}$
Goodness-of-fit on $\mathrm{F}^{2}$
Largest diff. peak and hole
R.M.S. deviation from mean

Full-matrix least-squares on $\mathrm{F}^{2}$
SHELXL-2018/3 (Sheldrick, 2018)
direct methods
SHELXT 2018/2 (Sheldrick, 2018)
$\Sigma \mathrm{w}\left(\mathrm{Fo}^{2}-\mathrm{Fc}^{2}\right)^{2}$
$6080 / 0 / 416$
5164 data; $\mathrm{I}>2 \sigma(\mathrm{I}) \mathrm{R} 1=0.0402, \mathrm{wR} 2=0.0942$
all data $\quad \mathrm{R} 1=0.0514, \mathrm{wR} 2=0.1008$
$\mathrm{w}=1 /\left[\sigma^{2}\left(\mathrm{Fo}^{2}\right)+(0.0400 \mathrm{P})^{2}+7.1188 \mathrm{P}\right]$
where $\mathrm{P}=\left(\mathrm{Fo}^{2}+2 \mathrm{Fc}^{2}\right) / 3$
$\underline{0.001}$
1.060
1.125 and $-0.687 \mathrm{e}^{-3}$
$\underline{0.094} \mathrm{e}^{\AA^{-3}}$

## Single Crystal X-Ray Structure Determination of Compound 4 (CCDC 2253558).



Figure S73. ORTEP style plot of compound 4 in the solid state (CCDC 2253558). Ellipsoids are drawn at the $50 \%$ probability level. Hydrogen atoms are omitted for clarity. Selected bond lengths $[\AA]$ and angles [ ${ }^{\circ}$ ]: Ru1-C31 2.0514(13), Ru1-N1 2.1104(11), Ru1-O2 2.2160(9), Ru1-P2 2.2271(4), Ru1-O1 2.2453(10), Ru1-P1 2.2635(4), C31-Ru1-N1 79.34(5), C31-Ru1-O2 103.49(4), N1-Ru1-O2 83.25(4), C31-Ru1-P2 86.49(4), N1-Ru1-P2 92.80(3), O2-Ru1-P2 168.31(3), C31-Ru1-O1 158.95(4), N1-Ru1O1 86.57(4), O2-Ru1-O1 58.97(3), P2-Ru1-O1 109.94(3), C31-Ru1-P1 100.24(4), N1-Ru1-P1 171.64(3), O2-Ru1-P1 88.77(3), P2-Ru1-P1 95.510(13), O1-Ru1-P1 91.44(3).

## Single Crystal X-Ray Structure Determination of Compound 4 (CCDC 2253558)

## Detailed Crystallographic Data.

Diffractometer operator:
Scanspeed
dx
Frames:
phi-scans with delta phi
omega-scans with delta omega
A. A. Heidecker

1-4 s per frame
40 mm
3904 measured in 13 XYZ data sets
-0.5/1.0
-0.5/0.5

Crystal Data:

| Chemical formula [ $\mathrm{C}_{39} \mathrm{H}_{39} \mathrm{NO}_{3} \mathrm{P}_{2} \mathrm{Ru}$ ] |  | Density $($ calculated $)=\underline{1.478} \mathrm{~g} / \mathrm{cm}^{3}$ |
| :---: | :---: | :---: |
| Formula weight $\underline{732.72}$ |  | Absorption coefficient $=\underline{0.613} \mathrm{~mm}^{-1}$ |
| monoclinic, $P$ 21/n |  | Mo $K \alpha$ radiation, $\lambda=\underline{0.71073} \AA$ |
| $a=\underline{9.8933(6) ~} \AA$ | $\alpha=90^{\circ}$ | Cell parameters from $\underline{209391}$ reflections |
| $b=\underline{17.5880(9)} \AA$ | $\beta=91.121(2)^{\circ}$ | $\theta=\underline{2.15-27.88}{ }^{\circ}$ |
| $c=\underline{18.9275(12)} \AA$ | $\gamma=90^{\circ}$ | $T=\underline{100(2)} \mathrm{K}$ |
| $V=\underline{3292.8(3)} \AA^{3}$ |  | clear yellow fragment |
| $Z=\underline{4}$ |  | $0.190 \times 0.202 \times 0.377 \mathrm{~mm}$ |
| $F(000)=\underline{1512}$ |  |  |

Data collection:

Bruker D8 Venture Duo IMS diffractometer

7838 independent reflections

Radiation source: TXS rotating anode
$\underline{7478}$ reflections with $\underline{I>2 \sigma\left(\mathrm{~F}^{2}\right)}$
Helios optic monochromator
$R_{\text {int }}=\underline{0.0340}$
Theta range for data collection
Index ranges
$\theta_{\text {max }}=\underline{27.88^{\circ}}, \theta_{\text {min }}=\underline{2.15}^{\circ}$
$\underline{-13}<=\mathrm{h}<=\underline{13}, \underline{-23}<=\mathrm{k}<=\underline{23}, \underline{-24}<=1<=\underline{24}$
Absorption correction
Multi-Scan, $\underline{S A D A B S ~ 2016 / 2, ~ B r u k e r ~}$

## Data refinement:

Refinement method
Refinement program
Structure solution technique
Structure solution program
Function minimized
Data / restraints / parameters

Final R indices

Weighting scheme
$\Delta / \boldsymbol{\sigma}_{\text {max }}$
Goodness-of-fit on $\mathrm{F}^{2}$
Largest diff. peak and hole
R.M.S. deviation from mean

Full-matrix least-squares on $\mathrm{F}^{2}$
SHELXL-2018/3 (Sheldrick, 2018)
direct methods
SHELXT 2018/2 (Sheldrick, 2018)
$\Sigma \mathrm{w}\left(\mathrm{Fo}^{2}-\mathrm{Fc}^{2}\right)^{2}$
7838/0/416
$\underline{7478}$ data; $\mathrm{I}>2 \sigma(\mathrm{I}) \mathrm{R} 1=0.0204, \mathrm{wR} 2=0.0509$
all data $\mathrm{R} 1=0.0218, \mathrm{wR} 2=0.0519$
$\mathrm{w}=1 /\left[\sigma^{2}\left(\mathrm{Fo}^{2}\right)+(0.0213 \mathrm{P})^{2}+2.8079 \mathrm{P}\right]$
where $\mathrm{P}=\left(\mathrm{Fo}^{2}+2 \mathrm{Fc}^{2}\right) / 3$
$\underline{0.001}$
1.050
0.369 and $-0.466 \mathrm{e}^{-3}$
$\underline{0.053} e^{\AA^{-3}}$


Figure S74. Cell viability measured by MTT assay of Astrocytes (A) and U87 MG cells (B) treated with Temozolomide (TMZ) for 72 h .

## References

1) (a) K. Gatto, J. D. Reinheimer, K. Shafer, J. T. Gerig, Org. Magn. Reson, 1974, 6, 577-579. (b) Y. Sarrafi, M. Tajbakhsh, R. Hosseinzadeh, M. Sadatshahabi, K. Alimohammadi, Synth. Commun., 2012, 42, 678-685.
2) R. Lin, F. Chen, N. Jiao, Org. Lett., 2012, 14, 4158-4161.
3) (a) G. A. Olah, O. Farooq, S. M. F. Farnia, J. A. Olah, J. Am. Chem. Soc., 1988, 110, 2560-2565. (b) H-J. Cristau, A. Bazbouz, P. Morand, E. Torreilles, Tetrahedron Lett., 1986, 27, 2965-2966. (c) B. Skillinghaug, C. Skold, J. Rydfjord, F. Svensson, M. Behrends, J. Savmarker, P. J. R. Sjoberg, M. Larhed, J. Org. Chem., 2014, 79, 12018-12032.
4) D. E. Alonso, S. E. Warren, J. Chem. Educ., 2005, 82, 1385-1386.
5) A. K. Mishraa, J. N. Moorthy, Org. Chem. Front., 2017, 4, 343-349.
6) (a) M. Li, B. Li, H.-F. Xia, D. Ye, J. Wu, Y. Shi, Green Chem., 2014, 16, 2680-2688. (b) T. Ohkuma, M. Koizumi, H. Doucet, T. Pham, M. Kozawa, K. Murata, E. Katayama, T. Yokozawa, T. Ikariya, R. Noyori, J. Am. Chem. Soc., 1998, 120, 13529-13530. (c) T. Vielhaber, C. Topf, Appl. Catal. A: Gen., 2021, 623, 118280.
7) S. Yadav, R. Gupta, ACS Sustain. Chem. Eng., 2023, 11, 8533-8543.
8) H. Shimizu, D. Igarashi, W. Kuriyama., Y. Yusa, N. Sayo and T. Saito, Org. Lett., 2007, 9, 16551657.
9) H. Yu, Y. Luo, K. Beverly, J. F. Stoddart, H.-R. Tseng, J. R. Heath, Angew. Chem. Int. Ed. 2003, 42, 5706-5711.
10) APEX suite of crystallographic software, APEX4 Version 2021-10-0, Bruker AXS Inc., Madison, Wisconsin, USA, 2021.
11) SAINT, Version 8.40A and SADABS, Version 2016/2, Bruker AXS Inc., Madison, Wisconsin, USA, 2016/2019.
12) G. M. Sheldrick, Acta Crystallogr. Sect. A 2015, 71, 3-8.
13) G. M. Sheldrick, Acta Crystallogr. Sect. C 2015, 71, 3-8.
14) C. B. Hübschle, G. M. Sheldrick, B. Dittrich, J. Appl. Cryst. 2011, 44, 1281-1284
15) International Tables for Crystallography, Vol. C (Ed.: A. J. Wilson), Kluwer Academic Publishers, Dordrecht, The Netherlands, 1992, Tables 6.1.1.4 (pp. 500-502), 4.2.6.8 (pp. 219-222), and 4.2.4.2 (pp. 193-199).
16) C. F. Macrae, I. J. Bruno, J. A. Chisholm, P. R. Edgington, P. McCabe, E. Pidcock, L. RodriguezMonge, R. Taylor, J. van de Streek, P. A. Wood, J. Appl. Cryst. 2008, 41, 466-470.
17) A. L. Spek, Acta Crystallogr. Sect. D 2009, 65, 148-155.
