Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2023

Supporting Information for

Facile Preparation of Highly Active Zirconia-Supported

Gold Nanoparticle Catalyst

Shin-ichi Naya,ª Miwako Teranishi,ª Hiroaki Tada* b

 ^a Environmental Research Laboratory, Kindai University, 3-4-1, Kowakae, Higashi-Osaka, Osaka 577-8502, Japan.
^b Institutes of Innovation for Future Society, Nagaya University, Chikusa-ku, Nagoya 464-8603, Japan.

Table of Contents

Experimental methods
Table S1. Catalytic activity of Au/MOs for H2O2 generation 4
Fig. S1. XRD patterns of ZrO ₂ , Au/ZrO ₂ -DP ₄₀₀ , and Au/ZrO ₂ -MDP ₄₀₀ 5
Fig. S2. TEM image (a) and Au particle size distribution (b) of Au/ZrO ₂ -DP ₄₀₀ ······5
Fig. S3. TEM (a) and HR-TEM images of Au/ZrO ₂ -MDP ₄₀₀ ······6
Fig. S4. Plots of the amount of H_2O_2 generated versus the amount of CO_2 generated in the Au/ZrO ₂ -MDP ₄₀₀ system $\cdots 6$
Fig. S5. (a) XRD patterns of Au/ZrO ₂ -MDP ₄₀₀ before and after the repeated reactions. (b) TEM image of Au/ZrO ₂ -MDP ₄₀₀ after the repeated reactions. Au4 f (c) and O1 s (d)-XP spectra of Au/ZrO ₂ -MDP ₄₀₀ before and after the repeated reactions7
Fig. S6. Kubelka-Munk-transformed absorption spectra of Au ³⁺ /ZrO ₂ -MDP calcined at various temperatures in the air7
Fig. S7. Zr3d-XP spectra for Au/ZrO ₂ -MDP ₄₀₀ , Au/ZrO ₂ -DP ₄₀₀ , and ZrO ₂ 8

Experimental methods

Materials. Commercial monoclinic ZrO₂ (mean particle size = 20 nm, specific surface area = 100 m²g⁻¹), UEP-100, Daiichi Kigenso Kagaku Kogyo Co.) was used as the support. Hydrogen tetrachloroaurate(III) tetrahydrate (HAuCl₄·4H₂O > 99%), sodium hydroxide (NaOH >97%), and formic acid (C₁H₂O₂ 88-90%) were purchased from Kanto Chemical Co. All chemicals were used asreceived without further purification.

Catalyst preparation. ZrO_2 particles (5 g) were dispersed into an aqueous solution of HAuCl₄ (4.86 mM, 50 mL), and stirred at room temperature (25°C) for 24 h. The suspension was neutralized to pH 7.0 by using 1 M NaOH aq., and heated at 80°C for 2 h. After washing and drying in vacuo, the resulting particles were calcined at 400°C for 1 h to obtain Au/ZrO₂-MDP₄₀₀. Au/ZrO₂-MDP₄₅₀ and Au/ZrO₂-MDP₅₀₀ were prepared by the similar procedure with the calcination at 450°C and 500°C, respectively. Au/ZrO₂-DP₄₀₀ was prepared by the similar procedure without long time stirring. ZrO₂ particles (5 g) were dispersed into an aqueous solution of HAuCl₄ (4.86 mM, 50 mL), and immediately neutralized to pH 7.0 by using 1 M NaOH aq. The suspension was heated at at 80°C for 2 h, and the resulting particles were collected by the centrifugation. The sample was washed and dried at room temperature in vacuo, and calcined at 400°C for 1 h to obtain Au/ZrO₂-DP₄₀₀.

Characterization. X-ray diffraction (XRD) patterns were collected by using a Rigaku SmartLab Xray diffractometer operated at 40 kV and 100 mA. The morphologies were characterized by using a transmission electron microscopy (TEM) operated with an applied voltage of 200 kV (JEM-2100F, JEOL). High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) image was obtained by means of JEM-2100F (JEOL) with an applied voltage of 200 kV. Au loading amounts were determined by using an inductively coupled plasma spectroscopy (ICPE-9820, Shimadzu). The diffuse reflectance UV-Vis-NIR absorption spectra were obtained by means of a UV-2600 spectrometer (Shimadzu) with integrating sphere unit (Shimadzu, ISR-2600Plus). BaSO₄ is used as a reference for the reflectance (R_{∞}) . Kubelka-Munk function $[F(R_{\infty}) = (1 - R_{\infty})^2/2R_{\infty}]$ was used for expressing the relative absorption coefficient. TG-DTA measurements were carried out by means of a simultaneous DTA-TG apparatus (Shimadzu, DTG-60). X-ray photoelectron spectra (XPS) were collected by means of a Kratos Axis Nova X-ray photoelectron spectrometer with 15 kV and 10 mA using Al K α as X-ray source. The peak of C1s (284.6 eV) was used as the energy reference. Diffuse reflectance infrared Fourier transform (DRIFT) spectra were obtained by using a Fourier transform infrared spectrophotometer (Shimadzu, FTIR-8400S) with a diffuse reflectance attachment (Shimadzu, DRS-8000).

Catalytic H₂O₂ production. Au/ZrO₂ or ZrO₂ (50 mg) was dispersed into an aqueous solution of HCOOH (1.06 M, 50 mL), and stirred at 25°C in the dark under aerobic conditions. The solution temperature was controlled by using a double jacket type cell with circulating thermostatted water through an outer jacket around the cell. The H₂O₂ concentration was quantified by iodometric titration.^{S1} The amount of CO₂ generated was measured by using gas chromatography (GC-2010Plus with BID-detector, Shimadzu, column = Micropacked ST, Shinwa Chemical Industries, He flow rate = 10 mL min⁻¹). The number of the surface Au atoms was estimted from the Au loading amount, the d_{Au} value, and the dispersion by assuming that every Au NP is hemispherical.^{S2} The turnover frequency (TOF) is calculated by the number of the H₂O₂ molecule generated during unit time / the number of Au surface atoms.

References

S1. R. Cai, Y. Kubota and A. Fujishima, J. Catal. 2003, 219, 214-218.

S2. G. A. Somorjai, Introduction to Surface Chemistry and Catalysis, John Wiley & Sons, New York, 1994.

catalyst	Au loading	Au particle	v (mM h ⁻¹)	TOF (h ⁻¹)	Selectivity
	amount	size (nm)			(%)
	(wt%)				
Au/ZrO ₂ -MDP	0.67	3.6±0.5	0.803 ± 0.003	102 ± 0.41	97.0 ± 4.8
Au/ZrO ₂ -DP	0.69	4.6±0.7	0.192 ± 0.015	29.1 ± 2.2	
Au/SrTiO ₃	0.67	4.2±1.4	0.445 ± 0.033	64.6 ± 4.7	89.2 ± 6.5
Au/CaTiO ₃	0.51	3.7±0.7	0.567 ± 0.034	73.9 ± 4.4	94.8 ± 4.8
Au/BaTiO ₃	0.67	3.8±0.9	0.467 ± 0.025	81.8 ± 4.4	94.9 ± 2.6
Au/TiO ₂	0.42	5.2±1.2	0.179 ± 0.046	49.5 ± 1.5	
Au/BiVO ₄	0.30	16.1±3.9	0.025 ± 0.008	19.9 ± 6.4	
Au/WO ₃	1.25	11.1±2.8	0.167 ± 0.009	29.2 ± 1.5	

Table S1. Catalytic activity of Au/MOs for H_2O_2 generation

Fig. S1. XRD patterns of ZrO₂, Au/ZrO₂-DP₄₀₀, and Au/ZrO₂-MDP₄₀₀.

a)

b)

Fig. S2. TEM image (a) and Au particle size distribution (b) of Au/ZrO₂-DP₄₀₀.

Fig. S3. TEM (a) and HR-TEM images of Au/ZrO₂-MDP₄₀₀.

Fig. S4. Plots of the amount of H_2O_2 generated versus the amount of CO_2 generated in the Au/ZrO_2-MDP_{400} system.

S6

Fig. S5. (a) XRD patterns of Au/ZrO₂-MDP₄₀₀ before and after the repeated reactions. (b) TEM image of Au/ZrO₂-MDP₄₀₀ after the repeated reactions. Au4*f* (c) and O1*s* (d)-XP spectra of Au/ZrO₂-MDP₄₀₀ before and after the repeated reactions.

Fig. S6. Kubelka-Munk-transformed absorption spectra of Au^{3+}/ZrO_{2-} MDP calcined at various temperatures in the air.

Fig. S7. Zr3d-XP spectra for Au/ZrO₂-MDP₄₀₀, Au/ZrO₂-DP₄₀₀, and ZrO₂.