Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2023

Supplementary Information

Modification of Cu-ZnO-ZrO₂ catalysts by La₂O₃ to quantitatively tune Cu⁺-Cu⁰ dual sites for hydrogenation of dimethyl adipate to produce 1,6-hexanediol

Xianlong Gao, Guoqing Zhao, Lei Miao, Lei Li and Zhirong Zhu*

(School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China.)

*Corresponding author.

E-mail address: zhuzhirong@tongji.edu.cn (Z. Zhu). Tel./fax: +8621-65982563.

Characterization of catalyst

X-ray diffraction (XRD) analysis was carried out on a X-ray diffraction (Rigaku D/Max-2500, Japan) using nickel filtered Cu Ka (λ = 0.15406 nm) radiation. The scan rate, diffraction range, tube voltage and tube current were 8 °/min, from 10 ° to 80 °, 40 kV and 100 mA, respectively.

Nitrogen adsorption-desorption proles at -196 °C were obtained by a Quantachrome Automated Gas Sorption apparatus (Micromeritics ASAP 2020). The samples were dehydrated at 300 °C using vacuum degassing for 12 h before experiments. The specific surface area was calculated by the BET (Brunauer-Emmett-Teller) method.

Transmission electron microscopy (TEM) micrograph was obtained using a JEOL JEMF200 election microscope operating at 200 kV.

The elemental compositions of catalysts were measured by inductively coupled plasma optical emission spectroscopy (ICP-OES).

X-ray photoelectron spectroscopy (XPS) measurements were performed on Escalab 250 (Thermo Fisher VG) with a monochromatic X-ray source of Al Ka under ultra-high vacuum $(2.4 \times 10^{-8} \text{ Pa})$. The deconvolution method of XPS spectra was fitted by Gaussian function.

Thermo gravimetric analysis (TGA) of the spent catalyst was carried out on a METTLER TGA/DSC1/1600HT apparatus in air atmosphere at a heating rate of 10 °C/min.

CO₂ temperature-programmed desorption (CO₂-TPD) was performed on a ChemBET Pulsar & TPR/TPD apparatus (Quantachrome Instruments) equipped with a TCD.

H₂ temperature-programmed desorption (H₂-TPD) was performed on a ChemBET Pulsar & TPR/TPD apparatus (Quantachrome Instruments) equipped with a TCD. 70 mg of the catalyst precursors was reduced in H₂-Ar gas (10% H₂, 30 ml·min⁻¹) at 350 °C for 4 h firstly, and then cooled to 40 °C under a He flow (30 ml·min⁻¹). Then, the sample adsorbed H₂ in a 10% H₂-He flow (30 ml·min⁻¹) for 60 min. Subsequently, the sample was purged by He flow (30 ml·min⁻¹) at 50 °C for 60 min. After that, the H₂-TPD signal was recorded in a He flow by a TCD detector from 50 to 400 °C at a heating rate of 10 °C·min⁻¹.

The metallic copper surface areas and metal dispersions for samples were determined according to H₂-N₂O titration. The Cu-ZnO-ZrO₂-La₂O₃ catalysts were also characterized by N₂O chemisorption and H₂-TPR method using a Quantachrome chemisorption apparatus (ChemBET 3000, USA) with a TCD. Firstly, 50 mg of sample was pretreated in a N₂ flow at 350 °C for 1 h, followed by reduction in a H₂-N₂ mixed flow (10% H₂, 30 ml·min⁻¹) at 350 °C for 2 h and then cooled to 90 °C under a N₂ flow (30 ml·min⁻¹). Next, 10% N₂O-90% He (30 ml·min⁻¹) was introduced at 90 °C for 1 h to oxidize Cu to Cu₂O. Then, H₂-TPR was conducted in H₂-N₂ mixed gas (10% H₂, 30 ml·min⁻¹) from 30 °C to 400 °C, and kept at 350 °C for 1 h. Cu⁰ surface area (S_{Cu}) was calculated according to 649×D_{Cu}×Cu loading (wt%).

The reaction equation is as follows:

$$CuO + H_2 \rightarrow Cu + H_2O \tag{1}$$

$$2Cu + N_2O \rightarrow Cu_2O + N_2 \tag{2}$$

 $Cu_2O + H_2 \rightarrow 2Cu + H_2O \tag{3}$

the amount of consumed H_2 in equation (1) was denoted as X, and the consumption of H_2 in equation (3) was denoted as Y.

Cu dispersion is:

$$D=(2Y/X) \tag{4}$$

Correspondingly, metallic Cu surface area $(S_{\text{Cu}},\ m^2/g)$ was calculated as the following equation:

$$S_{Cu} = \frac{D_{Cu} * N_{av}}{S_{Cu} * \rho_{Cu}} \approx 649 \times D_{Cu}$$
⁽⁵⁾

Fig. S1 FT-IR results of the precursors of the different Cu-ZnO-ZrO₂-La₂O₃ catalysts.

Fig. S2 (a) HAADF-STEM image of the CZZ-L0-CP catalyst and the corresponding elemental maps of Cu, Zn, Zr and O. (b) HAADF-STEM image of the CZZ-L2-CP catalyst and the corresponding elemental maps of Cu, Zn, Zr and La. (c) HRTEM image of CZZ-L0-CP. (d) HRTEM image of CZZ-L1-CP. (e) HRTEM image of CZZ-L2-CP. (f) HRTEM image of CZZ-L4-CP. (g) HRTEM image of CZZ-L6-CP. (h) HRTEM image of CZZ-L2-IM.

Fig. S3 Results of H₂-TPR fitting for CZZ-L1-CP and CZZ-L4-CP catalysts.

Fig. S4 (a) La 3d XPS spectra. (b) Zr 3d XPS spectra spectra.

Fig. S5 (a) The conversion of DMA and selectivity of HDO of the CZZ-L0-CP and CZZ-L2-CP catalysts for DMA hydrogenation reaction as a function of the time on stream. (b) The correlation of HDO selectivity with $Cu^+/(Cu^++Cu^0)$. Reaction conditions: 8 g of catalyst, 250 °C, 4 MPa H₂, H₂/DMA = 10 (mol·mol⁻¹), WHSV_{DMA} = 0.5 g·g_{cat}⁻¹·h⁻¹.

Fig. S6 The correlation of DMA conversion with over $Cu^{\scriptscriptstyle +}$ (a) and Cu^0 (b) sites plotted along the surface area of $Cu^{\scriptscriptstyle +}$ and Cu^0 species

Fig S7 TG profiles of the CZZ-L0-CP and CZZ-L2-CP catalysts after reaction at 250 °C for 12 h.

Samples	$\frac{S_{BET}{}^a}{(m^2 \cdot g^{-1})}$	$V_{p, BJH}^{b}$ (cm ³ ·g ⁻¹)	d _{p, BJH} c (nm)	Cu loading (wt%) ^d	Zn loading (wt%) ^d	La loading (wt%) ^d	Crystallite Size of CuO (nm) by XRD °
CZZ-L0-CP	20.6	0.096	18.58	41.9	22.9	0	17
CZZ-L1-CP	32.5	0.147	18.13	41.7	22.2	0.98	14
CZZ-L2-CP	41.1	0.212	20.69	41.3	21.8	1.99	14
CZZ-L4-CP	31.7	0.203	25.59	40.5	20.8	4.01	14
CZZ-L6-CP	23.3	0.143	24.47	39.0	20.3	5.99	15
CZZ-L2-IM	14.6	0.081	22.13	41.2	21.9	2.31	15

Table S1 The structural properties of as-calcined samples

 $^{a}S_{BET}$ =Specific Surface Area.

^b V_{p} , _{BJH}=Total Pove Volume Measured at P/P₀=0.99.

 $^{c}d_{p, BJH}$ =Average BJH adsorption Pore Diameter. ^d Determined by ICP-OES.

 e CuO crystallite size was calculated by the Scherrer equation at 20=38.8 °.

	1	able 52 Thysicoenennear pr	operties of various CZ-IVI cata	19818	
Samulas		Cu loading (wt%) a	Crystallite Size (nm)		
Samples	Cu loading (wt/o) –	by XRD ^b	by N ₂ O		
	CZZ-L0-CP	47.5	28	10.8	
	CZZ-L1-CP	46.0	24	7.04	
	CZZ-L2-CP	45.4	19	6.02	
	CZZ-L4-CP	44.5	19	6.37	
	CZZ-L6-CP	43.7	26	8.00	
	CZZ-L2-IM	45.2	34	16.1	

Table S2 Physicochemical properties of various CZ-M catalysts

 a Determined by ICP-OES b Cu crystallite size was calculated by the Scherrer equation at 20=43.2 o

Samples	${S_{BET} \over (m^2 \cdot g^{-1})^a}$	V _p , _{BJH} (cm ³ ·g ⁻¹) ^b	d _{p, BJH} (nm) °	D _{Cu} ^d (%)	D _{Cu} f (%)
CZZ-L0-CP	11.6	0.054	18.60	9.3	3.57
CZZ-L1-CP	23.1	0.084	14.51	14.2	3.57
CZZ-L2-CP	28.8	0.166	23.11	16.6	5.26
CZZ-L4-CP	26.0	0.100	15.70	15.7	5.26
CZZ-L6-CP	15.4	0.046	11.94	12.5	3.33
CZZ-L2-IM	6.5	0.033	20.67	6.9	2.94

Table S3 Characterization of Cu species for the CZ-X catalysts

^a S_{BET}=Specific Surface Area. ^b V_p, _{BJH}=Total Pove Volume Measured at P/P₀=0.99. ^c d_p, _{BJH}=Average BJH adsorption Pore Diameter. ^d Cu dispersion obtained by N₂O titration. ^e Cu dispersion obtained by D_{Cu} (%)=1.0/d_{Cu} (nm) (d_{Cu}: mean Cu particle size from XRD results).

	TPR peak position [temperature (°C)] and concentration (%) ^a					
Samples	Peak α	Peak β	Peak y			
CZZ-L0-CP	-	215 (100)	-			
CZZ-L1-CP	197 (64.2)	220 (35.8)	-			
CZZ-L2-CP	190 (100)	-	-			
CZZ-L4-CP	197 (58.1)	220 (41.9)	-			
CZZ-L6-CP	-	-	285 (100)			
CZZ-L2-IM	-	-	289 (100)			

Table S4 center of reduction peaks and their contributions to the TPR pattern over CZZ-LX catalysts with different La loading

^a Values in parentheses are the contributions (%) of each species.

Samples	Cu content ^a (wt%)	Amount of H_2 consumption ^b (mmol· g_{cat}^{-1})	Stoichiometry of H ₂ ^c (mmol·g _{cat} ⁻¹)
CZZ-L0-CP	47.5	1.96	7.48
CZZ-L1-CP	46.0	1.81	7.24
CZZ-L2-CP	45.4	1.68	7.15
CZZ-L4-CP	44.5	1.45	7.01
CZZ-L6-CP	43.7	1.39	6.88
CZZ-L2-IM	45.2	1.72	7.12

Table S5 H₂-TPR results for Cu-ZnO-ZrO₂-La₂O₃ samples

^a Determined by ICP-OES. ^b Amount of H₂ consumption was determined from H₂-TPR results. ^c Stoichiometry of H₂ consumption was calculated for reduction of Cu species to Cu⁰ based on the actual Cu content (the atomic ratio between H₂ and Cu species is 1:1).

Samples	${{S_{{{_{Cu}}^{{_{a}}a}}}} \over {\left({{m^2} \cdot {g^{ - 1}}} ight)}}$	${ m S}_{{ m Cu}^{*^b}} \ (m^2 \cdot g^{-1})$	$X_{cu^{+b}}(\%)$	$X_{Ov^d}(\%)$	$X_{z_r^{\mathfrak{s},\mathfrak{e}}}(\mathscr{N})$	$\begin{array}{c} STY_{HDO}{}^{f} \\ (g \cdot g_{cat}{}^{-1} \cdot h{}^{-1}) \end{array}$
CZZ-L0-CP	28.81	26.14	37.3	53.5	-	9.91
CZZ-L1-CP	42.41	42.85	43.7	45.4	19.0	10.56
CZZ-L2-CP	48.94	55.69	50.0	61.8	22.6	13.51
CZZ-L4-CP	45.34	54.64	52.8	50.2	16.1	12.85
CZZ-L6-CP	35.45	43.00	53.1	45.9	13.8	12.07

Table S6 Characterization of Cu species and surface atom concentrations for the CZZ-LX catalysts

^a Metallic copper surface area determined by H₂-N₂O titration. ^b S_{Cu}⁺ = Cu⁺ Surface area, calculated on the basis of X_{Cu}⁺ and S_{Cu}⁰. ^c X_{Cu}⁺ represents Cu⁺/(Cu⁺+Cu⁰) ratio calculated from Cu LMM spectra.

^d X_{Ov} represents $O_{vac}/(O_{latt}+O_{vac}+O_{ads})$ ratio calculated from XPS. ^e X_{Zr}³⁺ represents Zr³⁺/(Zr³⁺+ Zr⁴⁺) ratio calculated from XPS. ^f STY_{HDO} is denoted as the space time yield of HDO and calculated as gram of HDO per gram of catalyst per hour $(g \cdot g_{cat}^{-1} \cdot h^{-1})$.

Samples	T/°C	A/(a.u.)	Ratio/%
CZZ-L0-CP	81	77.7	100
CZZ-L1-CP	86	83.4	107
CZZ-L2-CP	97	130.3	168
CZZ-L4-CP	86	114.2	147
CZZ-L6-CP	80	67.8	87
CZZ-L2-IM	75	56.1	72

Table S7 The temperatures and areas of CO_2 desorption peaks with different La loadings