Supporting Information (SI):

Electronic modulation of CoP nanosheets array by Zn doping as efficient electrocatalysts for overall water splitting

Xiaoyi Li^a, Jianfeng Huang^{*a}, Zixuan Liu^b, Qian Chen^a, Guanjun Chen^a, Yifei Zhang^a,

Koji Kajiyoshi^c, Yong Zhao^d, Yijun Liu^d, Liyun Cao^{*a} and Liangliang Feng^{*a}

a School of Material Science and Engineering, International S&T Cooperation Foundation of

Shaanxi Province, Shaanxi University of Science and Technology, Xi'an 710021, China

b Faculty of Engineering, University of Nottingham, University Park, Nottingham NG7 2RD,

UK

c Kochi University, Research Laboratory of Hydrothermal Chemistry, Kochi 780-8520, Japan

d Guangdong Mona Lisa Group Co. Ltd., Foshan, Guangdong 528211, China

* Corresponding authors

E-mail: huangjf@sust.edu.cn; fengll@sust.edu.cn; caoliyun@sust.edu.cn

Fig. S1 SEM images of (a-c) $CoZn(OH)_x/CF$ and (d-f) $Co(OH)_x/CF$.

Fig. S2 XRD pattern of Zn-CoP/CF and CoP/CF.

Fig. S3 SEM images of (a-c) CoP/CF.

Fig. S4 (a) EDX element mapping of O element in Scanning TEM image of Zn-CoP/CF; (b-c) EDX results of Zn-CoP/CF.

Fig. S5 (a-b) TEM images at different magnifications of CoP/CF.

Fig. S6 (a) High-resolution XPS spectra of O 1s of Zn-CoP/CF and CoP/CF. (b) High-resolution XPS spectra of Zn 2p of Zn-CoP/CF.

Fig. S7 Polarization curves for HER of catalysts at different phosphating temperatures.

Fig. S8 For HER: CV curves of (a) Zn-CoP/CF and (b) CoP/CF in 1 M KOH solution.

Fig. S9 For HER and OER: (a) C_{dl} values and (b) ECSA values of different samples for comparison. C_{dl} is 1/2 of the slope of capacitive current density vs. scan rate in linear plots.

According to the previously reported work, the ECSA was calculated based on the values of C_{dl} .

$$ECSA = \frac{Cdl}{Cs}$$

The specific capacitance (C_s) is used as 40 μ F/cm² as reported in 1 M KOH. In our work, C_{dl} is multiplied by the geometric area of the electrode first.

Fig. S10 (a-b) TEM images and (c) high-resolution TEM image of Zn-CoP/CF after HER stability test.

Fig. S11 Raman spectra of Zn-CoP/CF after HER stability test.

Fig. S12 XPS spectrum of Zn-CoP/CF after HER electrochemical test: (a) Co 2p; (b) P 2p; (c) O 1s; (d) Zn 2p.

Zn-doped CoP

Fig. S13 (a) Top view and (b) side view of Zn-doped CoP. Orange, blue, and gray balls represent P, Co, and Zn atoms, respectively.

CoP-H_{ads}

Fig. S14 (a) Top and (b) side view of optimized models for hydrogen adsorption on CoP (111) surface.

Fig. S15 (a) Location of Co1-site in the Zn-doped CoP structure. (b) The charge density difference at the Zn-doped CoP with an isosurface value of 0.002 e Å⁻³. Green and pink colors represent charge depletion and accumulation, respectively.

Fig. S16 Polarization curves for OER of catalysts at different phosphating temperatures.

Fig. S17 For OER: CV curves of (a) Zn-CoP/CF and (b) CoP/CF in 1 M KOH solution.

Fig. S18 (a-b) TEM images and (c) high-resolution TEM image of Zn-CoP/CF after OER stability test.

Fig. S19 Raman spectra of Zn-CoP/CF after OER stability test.

Fig. S20 XPS spectrum of Zn-CoP/CF after OER electrochemical test: (a) Co 2p; (b) P 2p; (c) O 1s; (d) Zn 2p.

Catalysts	Electrolyte –	HI	ER	OER		
		R _s (ohm)	R _{ct} (ohm)	R _s (ohm)	R _{ct} (ohm)	
Zn-CoP/CF	1 M KOH	3.596	231.1	3.543	21.81	
CoP/CF	1 M KOH	3.557	312.8	3.879	77.72	

Table S1. Fitted data from Nyquist plots of as-synthesized samples in alkaline conditions.

	Electrolyt e	HER		(
Catalysts		j (mA/cm ²)	Overpotential (mV)	j (mA/cm ²)	Overpotential (mV)	References
		100	166	100	300	
Zn-CoP/CF	1 M KOH	500	255	500	367	This work
		1000	327	1000	440	
Fe-CoP HNSs	1 M KOH	10	79	10	220	Int. J. Hydrogen Energy, 2021 , 46(52), 26391-26401
Cr-CoP/CP	1 M KOH	10	67	10	251	Chem. Eng. J., 2021 ,425, 130651
V-CoP@a-CeO ₂	1 M KOH	100	140	100	340	Adv. Funct. Mater. 2020 , 30(14), 1909618
CoFeP/CF	1 М КОН	50	152.6	50	277.9	J. Colloid Interface Sci., 2020 , 569, 140-149
CoP/SPNF	1 M KOH	100	160	100	266	Inorg. Chem. 2020 59 (12), 8522- 8531
Fe ₃ Co ₇ @PCNSs	1 M KOH	10	205	10	300	J. Colloid Interface Sci., 2019 , 537, 280-294
CoNi-OOH-30(40)	1 M KOH	10	210	10	279	Electrochim. Acta, 2019 , 301, 449-457
Fe-CoP HTPs/NF	1 M KOH	10	98	10	230	Small 2018 , 14 (14),

Table S2. The recently reported Co-based bifunctional electrocatalysts for HER and OER in alkaline media.

						1704233
Ni-Co-S/Ni-Co-P	1 М КОН	20	110	50	240	J. Mater. Chem. A 2018 , 6 (41), 20297-20303
NiCoP NWAs/NF	1 М КОН	100	197	100	370	J. Mater. Chem. A 2017 , 5 (28), 14828-14837

		Overall wate			
Catalysts	Electrolyte	j	Potential	References	
		$(mA cm^{-2})$	(mV)		
Zn-CoP/CE	1 M KOH	100	1.71	This work	
	I WI KOII	1000	2.01		
Fe-CoP HNSs	1 M KOH	20	1.60	Int. J. Hydrogen Energy, 2021 , 46(52), 26391- 26401	
Cr-CoP/CP	1 M KOH	100	1.73	Chem. Eng. J., 2021 ,425, 130651	
V-CoP@a-CeO ₂	1 M KOH	100	1.71	Adv. Funct. Mater. 2020 , 30(14), 1909618	
CoFeP/CF	1 М КОН	10	1.495	J. Colloid Interface Sci., 2020 , 569, 140- 149	
CoP/SPNF	1 M KOH	50	1.621	Inorg. Chem., 2020 , 59 (12), 8522-8531	
Fe ₃ Co ₇ @PCNSs	1 M KOH	100	1.794	J. Colloid Interface Sci., 2019 , 537, 280- 294	
CoNi-OOH-30(40)	1 M KOH	10	1.76	Electrochim. Acta, 2019 , 301, 449-457	
Fe-CoP HTPs/NF	1 M KOH	10	1.59	Small, 2018 , 14 (14), 1704233	
NiCoP NWAs/NF	1 М КОН	20	1.64	J. Mater. Chem. A, 2017 , 5 (28), 14828-14837	

Table S3. The recently reported Co-based bifunctional electrocatalysts for overall water splitting in alkaline media.