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Reagents and Instruments 

Cobalt (II) chloride hexahydrate (CoCl2·6H2O), Iron (III) chloride tetrahydrate 

(FeCl3·4H2O), were purchased from Sigma-Aldrich. Sodium carbonate (Na2CO3) was purchased 

from Merck. The electrochemical workstation AURT-M204 has been used for the entire OER 

studies. A typical three electrode set-up with 1M KOH is used as an electrolyte for for OER 

experiments. Hg/HgO reference electrode was purchased from CH instruments and graphite rod 

counter electrode and Nickel Foam (NF) working electrode was purchased from Alfa-Aesar. DI 

water was used throughout the entire experimental analysis. For handling the chemicals and 

glassware’s for the synthesis process as well as the application part, safety glove, lab coat and 

safety glass were mandatory and used accordingly. The as prepared powder materials were 

subjected to initial characterization XRD. XRD analysis was done with a scanning rate of 5° min-

1 in the 2θ range 5-90° using a Bruker X-ray powder diffractometer (XRD) with Cu Kα radiation 

(λ = 0.154 nm). Then the catalysts were characterized with FE-SEM instrument (SUPRA 55VP 

Carl Zeiss) with a separate EDS detector connected to that instrument. Energy Dispersive X-ray 

Spectroscopy (EDS) analysis was done with the assistance of FESEM instrument X-ray 

photoelectron spectroscopic (XPS) analysis was performed using a Theta Probe AR-XPS system 

(Thermo Fisher Scientific, UK). HR-TEM, (TecnaiTM G2 TF20) working at an accelerating voltage 

of 200 kV and by Talos F200-S with HAADF elemental mapping. 

Calculation of d-spacing value: The d-spacing values of all catalysts were calculated by 

using following formulae,  

 𝑑 = 𝑛𝜆 /2𝑑𝑆𝑖𝑛ɵ                                                                                                         (S6) 
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Calculated area associated with the reduction of Co3+ to Co2+ of CoFe-

LDH/𝐈−= 0.0012408 VA 

Hence, the associated charge is = 0.0012408 VA / 0.15 Vs-1 

                                                   = 0.008272 C 

Now, the number of electron transferred is 0.008272 C / 1.602 ×10-19  

                                                                     = 0.0051635 ×1019 

Since, the reduction of Co3+ to Co2+ is a single electron transfer reaction, the number 

electron calculated above is exactly the same as the number of surface-active sites.  

 

Hence, the number of Co participate in OER is = 5.1635 ×1016 

Calculated area associated with the reduction of Co3+ to Co2+ of CoFe-

LDH/𝐁𝐫−= VA 

Hence, the associated charge is = 0.001130529 VA / 0.15 Vs-1 

                                                   = 0.0075368 C  

Now, the number of electron transferred is = 0.0075368 C / 1.602 ×10-19  

                                                                     = 0.0047046×1019  

Since, the reduction of Co3+ to Co2+ is a single electron transfer reaction, the number 

electron calculated above is exactly the same as the number of surface-active sites.  

 

Hence, the number of Co participate in OER is = 4.7046×1016 

Calculated area associated with the reduction of Co3+ to Co2+ of CoFe-LDH/𝐂𝐥−
 

= VA 

Hence, the associated charge is = 0.00068998 VA/ 0.15 Vs-1 

                                                   = 0.004599 C  

Now, the number of electron transferred is = 0.004599 C/ 1.602 ×10-19  

                                                                     = 0.002871×1019 
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Since, the reduction of Co3+ to Co2+ is a single electron transfer reaction, the number 

electron calculated above is exactly the same as the number of surface-active sites.  

 

Hence, the number of Co participate in OER is = 2.871×1016 

Calculated area associated with the reduction of Co3+ to Co2+ of CoFe-

LDH/Bare = 0.0003179 VA 

Hence, the associated charge is = 0.003179 VA/ 0.15 Vs-1 

                                                   = 0.00354 C  

Now, the number of electron transferred is = 0.002119 C/ 1.602 ×10-19  

                                                                     = 0.001322×1019 

Since, the reduction of Co3+ to Co2+ is a single electron transfer reaction, the number 

electron calculated above is exactly the same as the number of surface-active sites.  

 

Hence, the number of Co participate in OER is = 1.322×1016 
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Figure S1 The d-spacing values of all catalysts were calculated by using following formulae, 𝑑 = 

𝑛𝜆 /2𝑑𝑆𝑖𝑛ɵ. The d space states that the distance between the two atomic planes. Hence here in this 

case the material without guest anion CoFe-LDH shows d-spacing value of 7.32 Å, whereas with 

guest anion it shows 7.56, 7.66 and 7.80 Å. Hence while intercalating the guest anions d-space 

value also increase which suggest that interlayer distance of LDHs increase gradually as per the 

size of the anions.                                                                                                    
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Figure S2a is the FT-IR spectrum for all prepared catalyst, which is used to analyze the interlayer 

anions of prepared CoFe-LDHs material. Figure S2b is the enlarged FT-IR spectrum of all 

prepared CpoFe-LDHs materials.                                          
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Figure S3 shows the microscopic images of CoFe-LDH/Bare. FE-SEM and TEM images from 

Figure S3, [(a-c) and (d-f)], revels that materials are in hexagonal sheet like structure. HR-TEM 

images of Figure S3g shows the lattice fringes of CoFe-LDH/Bare with d-spacing values of 3.62 

and 7.32 Å , are consistent with (006) and (003) plane. The SAED pattern of CoFe-LDH/Bare 

(Figure S3h) suggest that the material is in polycrystalline nature.  

Figure S3. (a-c) High to Low magnification FE-SEM images of CoFe-LDH/Bare; (d-f) High to 

Low magnification HR-TEM images CoFe-LDH/Bare; (g) lattice fringes of CoFe-LDH/Bare and 

(h) SAED pattern of CoFe-LDH/Bare. 
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Figure S4 shows the microscopic images of CoFe-LDH/Cl−. FE-SEM and TEM images from 

Figure S4, [(a-c) and (d-f)], revels that materials are in hexagonal sheet like structure. HR-TEM 

images of Figure S4g shows the lattice fringes of CoFe-LDH/Cl− with d-spacing values of 3.77 

Figure S4. (a-c) High to Low magnification FE-SEM images of CoFe-LDH/Cl−; (d-f) High to 

Low magnification HR-TEM images CoFe-LDH/Cl−; (g) lattice fringes of CoFe-LDH/Cl−
 and 

(h) SAED pattern of CoFe-LDH/Cl−; (i) HAADF area chosen for colour mapping and (j-n) 

showing the colour mapping results of CoFe-LDH/Cl−
 mix, Co, Fe, Cl- and O respectively. 
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and 7.56 Å , are consistent with (006) and (003) plane. The SAED pattern of CoFe-LDH/Cl− 

(Figure S4h) suggest that the material is in polycrystalline nature. Figure S4i shows the HR-TEM 

HAADF image of CoFe-LDH/Cl− and the same was exposed to mapping analysis. Hence, Figure 

S4[j-n] demonstrates the uniform distribution of all respective elements (Co, Fe, O and Cl−).  
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Figure S5 shows the microscopic images of CoFe-LDH/Br−. FE-SEM and TEM images from 

Figure S5, [(a-c) and (d-f)], revels that materials are in hexagonal sheet like structure. HR-TEM 

Figure S5. (a-c) High to Low magnification FE-SEM images of CoFe-LDH/Br−;  (d-f) High 

to Low magnification HR-TEM images CoFe-LDH/Br−; (g) lattice fringes of CoFe-

LDH/Br−
 and (h) SAED pattern of CoFe-LDH/Br−; (i) HAADF area chosen for colour 

mapping and (j-n) showing the colour mapping results of CoFe-LDH/Br−
 mix, O, Co, Fe and 

Br- respectively. 
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images of Figure S4g shows the lattice fringes of CoFe-LDH/Br−with d-spacing values of 3.86 

and 7.66 Å , are consistent with (006) and (003) plane. The SAED pattern of CoFe-LDH/Br−.  

(Figure S4h) suggest that the material is in polycrystalline nature. Figure S4i shows the HR-TEM 

HAADF image of CoFe-LDH/Br− and the same was exposed to mapping analysis. Hence, Figure 

S4[j-n] demonstrates the uniform distribution of all respective elements (Co, Fe, O and Br−).  
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,
  CoFe-

LDH/Cl− and CoFe-LDH/Bare, respectively. 
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Figure S16. a) LSV polarization outcomes after and before 500 number of cycling for 

CoFe-LDH/Br−; b) chronoamperometric outcomes of CoFe-LDH/Br−; c) LSV 

polarization outcomes after and before 500 number of cycling for CoFe-LDH/Cl− and d) 

chronoamperometric outcomes of CoFe-LDH/Cl−. 
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Figure S17. Schematic representation Intercalation of Guest Anions (Cl−, Br−) into 

CoFe-LDHs. 
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Figure S18. a) Post-XRD patterns of CoFe-LDH/I−; b-c) low to high magnification Post-FE-

SEM images of CoFe-LDH/I−. 



24 
 

 

 

 

 

 

 

 

 

 

 

Figure S19. (a-d) High to Low magnification HR-TEM images post CoFe-LDH/I−; (e) SAED 

pattern of Post CoFe-LDH/I−; (f) HAADF area chosen for colour mapping and (g-l) Showing 

the colour mapping results of Post CoFe-LDH/I−
 mix, O, Co, Fe, I and K respectively. 
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Figure S20. a) Deconvoluted post-XPS spectrum of Co 2p orbitals CoFe-LDH/I−; b) 

deconvoluted post-XPS spectrum of Fe 2p orbitals CoFe-LDH/I−; c) deconvoluted 

post-XPS spectrum of I 3d orbitals of CoFe-LDH/I−and d) deconvoluted post-XPS 

spectrum of O 1s orbitals of CoFe-LDH/I− 
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       Catalyst 

 

𝐂𝐨𝐛𝐚𝐥𝐭 

 

𝐈𝐫𝐨𝐧 

 

𝐇𝐨𝐬𝐭 𝐢𝐨𝐧𝐬 

 

Guest ions 

 

CoFe-LDH/𝐁𝐫− 
 

 

0.1 M 

 

0.1 M 

 

0.4 M 

 

0.1 M 

 

CoFe-LDH/𝐂𝐥− 
 

 

0.1 M 

 

0.1 M 

 

0.4 M 

 

0.1 M 

 

CoFe-LDH/𝐈− 
 

 

0.1 M 

 

0.1 M 

 

0.4 M 

 

0.1 M 

 

CoFe-LDH/𝐁𝐚𝐫𝐞 
 

 

0.1 M 

 

0.1 M 

 

0.5 M 

 

- 

           Table S1. Synthesized catalysts with different molar concentrations of CoFe-LDH. 
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 Catalyst  

 

ECSA for OER 

 

ECSA for HER 

 

CoFe-LDH/Bare 

 

0.1465 

 

0.185 

 

CoFe-LDH/𝐂𝐥− 

 

0.6135 

 

0.524 

 

CoFe-LDH/𝐁𝐫− 
 

 

0.7975 

 

0.638 

 

CoFe-LDH/𝐈− 
 

 

 

0.90125 

 

0.826 

Table S2. ECSA values of all prepared catalyst. 
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       Catalyst 

 

Co3+/Co2+ 

 

CoFe-LDH/𝐂𝐥− 
 

 

1.45 

 

CoFe-LDH/𝐁𝐫− 
 

 

2.01 

 

CoFe-LDH/𝐈− 
 

 

3.23 

 

CoFe-LDH/𝐁𝐚𝐫𝐞 
 

 

0.99 

Table S3. The Co3+ to Co2+ ratio (Co2+/Co3+) of prepared catalyst, as derived from peak 

deconvolution of Co 2p core-level XPS spectra. 
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