Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2023

# **Supporting Information**

## Potential Dependence of Gluconic Acid to Glucose Electroreduction on Silver

Maria Wolfsgruber,<sup>a</sup> Prathamesh Patil,<sup>b</sup> Christian M. Pichler,<sup>b,c</sup> Robert H. Bischof,<sup>d</sup> Serhiy Budnyk,<sup>e</sup> Christian Paulik,<sup>f</sup> Bruno V. M. Rodrigues<sup>\*g</sup> and Adam Slabon<sup>\*g</sup>

| а | DiplIng. Maria, Wolfsgruber                                                  |
|---|------------------------------------------------------------------------------|
|   | Kompetenzzentrum Holz GmbH                                                   |
|   | Altenberger Straße 69, 4040 Linz, Austria                                    |
| b | Prathamesh Patil; Dr. Christian M. Pichler                                   |
|   | Centre for Electrochemistry and Surface Technology                           |
|   | TFZ – Wiener Neustadt                                                        |
|   | Viktor-Kaplan-Strasse 2, 2700 Wr. Neustadt, Austria                          |
| с | Dr. Christian M. Pichler                                                     |
|   | Institute of Applied Physics                                                 |
|   | Vienna University of Technology                                              |
|   | Wiedner Hauptstr. 8-10/134, 1040 Wien, Austria                               |
| d | Dr. Robert H., Bischof                                                       |
|   | Lenzing AG                                                                   |
|   | Werkstraße 2, 4860 Lenzing, Austria                                          |
| e | Dr. Serhiy, Budnyk                                                           |
|   | AC2T Research GmbH                                                           |
|   | Viktor Kaplan-Straße 2/c, 2700 Wiener Neustadt, Austria                      |
| f | Prof. Dipl.Ing. Dr. Christian, Paulik                                        |
|   | Institute for Chemical Technology of Organic Materials                       |
|   | Johannes Kepler University Linz                                              |
|   | Altenberger Straße 69, 4040 Linz, Austria                                    |
| g | Prof. Dr. Adam, Slabon; Dr. Bruno V. M., Rodrigues                           |
|   | Chair of Inorganic Chemistry                                                 |
|   | University of Wuppertal                                                      |
|   | Gaußstraße 20, 42119 Wuppertal, Germany                                      |
|   | E-mail: <a href="mailto:slabon@uni-wuppertal.de">slabon@uni-wuppertal.de</a> |
|   |                                                                              |

Number of Pages: 8

Number of Tables: 2

Number of Figures: 3

## **Table of Contents**

## I. Supplemental Table

**Table S1:** Summary of all experiments with the initial ( $c_0$ ) and measured concentrations (c) of gluconic acid, glucose and the calculated produced glucose and the conversion rate (CR) over the reaction time (t) up to 8 h and the average values after 8 h (AV 8). The charge (Q) was determined from the chronoamperometric curves and the Faraday efficiency (FE) was calculated according to Equation S1. The experiments were performed in an H-cell. A 3.5 cm<sup>2</sup> silver wire was used as working electrode, a platinum mesh as counter electrode and an Ag/AgCI (saturated KCI) as reference electrode. All reactions were performed in a solution with 1.5 wt% MgSO<sub>4</sub> as electrolyte.

| E / V<br>vs<br>RHE | c₀(Gluconic<br>acid) /<br>mmol L <sup>-1</sup> | c₀(Glucose) /<br>mmol L <sup>-1</sup> | t/h     | c(Gluconic<br>acid) /<br>mmol L <sup>_1</sup> | c(Glucose) /<br>mmol L <sup>-1</sup> | c(Glucose) <sub>prod.</sub> /<br>mmol L <sup>-1</sup> | CR(Gluconic<br>acid) / % | Q/C | FE / % |
|--------------------|------------------------------------------------|---------------------------------------|---------|-----------------------------------------------|--------------------------------------|-------------------------------------------------------|--------------------------|-----|--------|
| -0.66              | 127.89                                         | 0.121                                 | 1       | 127.76                                        | 0.127                                | 0.006                                                 | 0.005                    | 34  | 0.17   |
|                    |                                                |                                       | 2       | 127.84                                        | 0.128                                | 0.007                                                 | 0.006                    | 70  | 0.10   |
|                    |                                                |                                       | 4       | 127.87                                        | 0.128                                | 0.007                                                 | 0.006                    | 135 | 0.05   |
|                    |                                                |                                       | 6       | 127.55                                        | 0.128                                | 0.007                                                 | 0.006                    | 193 | 0.04   |
|                    |                                                |                                       | 8       | 127.56                                        | 0.130                                | 0.009                                                 | 0.007                    | 247 | 0.04   |
|                    | 129.63                                         | 0.125                                 | 8       | 132.84                                        | 0.136                                | 0.008                                                 | 0.006                    |     |        |
|                    |                                                |                                       | AV<br>8 |                                               |                                      | 0.008                                                 | 0.007                    |     |        |
| -0.86              | 127.91                                         | 0.121                                 | 1       | 127.83                                        | 0.132                                | 0.012                                                 | 0.009                    | 51  | 0.21   |
|                    |                                                |                                       | 2       | 127.65                                        | 0.132                                | 0.012                                                 | 0.009                    | 104 | 0.11   |
|                    |                                                |                                       | 4       | 128.32                                        | 0.136                                | 0.015                                                 | 0.012                    | 198 | 0.07   |
|                    |                                                |                                       | 6       | 127.79                                        | 0.136                                | 0.015                                                 | 0.012                    | 284 | 0.05   |
|                    |                                                |                                       | 8       | 127.69                                        | 0.139                                | 0.018                                                 | 0.014                    | 359 | 0.05   |
|                    | 128.83                                         | 0.124                                 | 8       | 131.35                                        | 0.139                                | 0.012                                                 | 0.009                    |     |        |
|                    |                                                |                                       | AV<br>8 |                                               |                                      | 0.015                                                 | 0.012                    |     |        |
| -1.06              | 128.05                                         | 0.118                                 | 1       | 128.30                                        | 0.133                                | 0.015                                                 | 0.011                    | 59  | 0.23   |
|                    |                                                |                                       | 2       | 128.23                                        | 0.140                                | 0.022                                                 | 0.017                    | 110 | 0.19   |
|                    |                                                |                                       | 4       | 128.05                                        | 0.161                                | 0.043                                                 | 0.033                    | 195 | 0.21   |
|                    |                                                |                                       | 6       | 127.87                                        | 0.172                                | 0.054                                                 | 0.042                    | 269 | 0.19   |
|                    |                                                |                                       | 8       | 128.47                                        | 0.188                                | 0.069                                                 | 0.054                    | 335 | 0.19   |
|                    | 127.37                                         | 0.123                                 | 8       | 131.60                                        | 0.175                                | 0.049                                                 | 0.037                    |     |        |
|                    |                                                |                                       | AV<br>8 |                                               |                                      | 0.059                                                 | 0.046                    |     |        |
| -1.16              | 127.46                                         | 0.125                                 | 1       | 127.46                                        | 0.148                                | 0.022                                                 | 0.017                    | 62  | 0.33   |
|                    |                                                |                                       | 2       | 128.22                                        | 0.160                                | 0.035                                                 | 0.027                    | 127 | 0.26   |
|                    |                                                |                                       | 4       | 130.64                                        | 0.197                                | 0.070                                                 | 0.053                    | 240 | 0.27   |
|                    |                                                |                                       | 6       | 130.64                                        | 0.221                                | 0.094                                                 | 0.073                    | 334 | 0.26   |
|                    |                                                |                                       | 8       | 129.91                                        | 0.247                                | 0.120                                                 | 0.092                    | 417 | 0.27   |
|                    | 128.70                                         | 0.122                                 | 8       | 128.53                                        | 0.237                                | 0.115                                                 | 0.089                    |     |        |
|                    |                                                |                                       | AV<br>8 |                                               |                                      | 0.117                                                 | 0.091                    |     |        |
| -1.26              | 128.98                                         | 0.122                                 | 1       | 127.68                                        | 0.134                                | 0.013                                                 | 0.011                    | 63  | 0.20   |
|                    |                                                |                                       | 2       | 127.75                                        | 0.140                                | 0.019                                                 | 0.015                    | 126 | 0.15   |
|                    |                                                |                                       | 4       | 127.72                                        | 0.182                                | 0.061                                                 | 0.048                    | 235 | 0.25   |
|                    |                                                |                                       | 6       | 127.82                                        | 0.211                                | 0.090                                                 | 0.070                    | 325 | 0.26   |
|                    |                                                |                                       | 8       | 128.04                                        | 0.259                                | 0.138                                                 | 0.107                    | 402 | 0.33   |
|                    | 125.11                                         | 0.122                                 | 8       | 130.02                                        | 0.287                                | 0.159                                                 | 0.122                    |     |        |
|                    |                                                |                                       | AV<br>8 |                                               |                                      | 0.148                                                 | 0.115                    |     |        |
| -1.36              | 128.17                                         | 0.123                                 | 1       | 128.03                                        | 0.163                                | 0.040                                                 | 0.031                    | 58  | 0.65   |
|                    |                                                |                                       | 2       | 129.09                                        | 0.189                                | 0.064                                                 | 0.050                    | 117 | 0.51   |
|                    |                                                |                                       | 4       | 128.35                                        | 0.244                                | 0.120                                                 | 0.093                    | 217 | 0.52   |
|                    |                                                |                                       | 6       | 129.26                                        | 0.283                                | 0.158                                                 | 0.122                    | 299 | 0.49   |
|                    |                                                |                                       | 8       | 128.89                                        | 0.310                                | 0.185                                                 | 0.144                    | 370 | 0.47   |
|                    | 127.96                                         | 0.124                                 | 8       | 130.19                                        | 0.348                                | 0.221                                                 | 0.170                    |     |        |
|                    |                                                |                                       | AV      |                                               |                                      | 0.203                                                 | 0.157                    |     |        |

|       |        |       | 8       |        |       |       |       |     |      |
|-------|--------|-------|---------|--------|-------|-------|-------|-----|------|
| -1.46 | 127.44 | 0.121 | 1       | 127.92 | 0.209 | 0.088 | 0.069 | 59  | 1.39 |
|       |        |       | 2       | 128.48 | 0.249 | 0.128 | 0.099 | 119 | 1.01 |
|       |        |       | 4       | 129.18 | 0.315 | 0.193 | 0.149 | 224 | 0.80 |
|       |        |       | 6       | 129.03 | 0.351 | 0.229 | 0.177 | 317 | 0.67 |
|       |        |       | 8       | 129.33 | 0.377 | 0.254 | 0.196 | 397 | 0.60 |
|       | 129.36 | 0.124 | 8       | 128.83 | 0.374 | 0.250 | 0.194 |     |      |
|       |        |       | AV<br>8 |        |       | 0.252 | 0.195 |     |      |
| -1.56 | 126.34 | 0.122 | 1       | 125.73 | 0.290 | 0.168 | 0.133 | 58  | 2.72 |
|       |        |       | 2       | 125.72 | 0.326 | 0.204 | 0.162 | 117 | 1.65 |
|       |        |       | 4       | 125.31 | 0.377 | 0.255 | 0.203 | 225 | 1.08 |
|       |        |       | 6       | 125.18 | 0.407 | 0.286 | 0.228 | 323 | 0.84 |
|       |        |       | 8       | 126.01 | 0.420 | 0.298 | 0.236 | 411 | 0.69 |
|       | 126.19 | 0.120 | 8       | 126.95 | 0.415 | 0.293 | 0.231 |     |      |
|       |        |       | AV<br>8 |        |       | 0.296 | 0.233 |     |      |
| -1.66 | 128.29 | 0.129 | 1       | 128.66 | 0.265 | 0.136 | 0.105 | 55  | 2.31 |
|       |        |       | 2       | 129.83 | 0.292 | 0.162 | 0.124 | 113 | 1.34 |
|       |        |       | 4       | 127.96 | 0.325 | 0.197 | 0.153 | 228 | 0.82 |
|       |        |       | 6       | 128.88 | 0.336 | 0.206 | 0.159 | 326 | 0.59 |
|       |        |       | 8       | 128.86 | 0.337 | 0.208 | 0.161 | 413 | 0.47 |
|       | 128.22 | 0.124 | 8       | 133.61 | 0.312 | 0.183 | 0.137 |     |      |
|       |        |       | AV<br>8 |        |       | 0.195 | 0.149 |     |      |

## II. Supplemental Equation

The calculations of the Faraday efficiencies (FEs) for each timeline experiment were done according to Equation S1:

$$FE = \frac{z \cdot F \cdot n}{I \cdot t} = \frac{z \cdot F \cdot n}{Q} = \frac{z \cdot F \cdot c(Glucose)_{prod.} \cdot \frac{c_0(Glucose) + c_0(Gluconic acid)}{c(Glucose) + c(Gluconic acid)} \cdot V_0}{Q} \cdot 100\%$$

where *z*, *F* and *n* represent the number of electrons for the conversion of gluconic acid to glucose (2e<sup>-</sup>), the Faraday constant (96485 C·mol<sup>-1</sup>) and the mole of glucose generated, respectively. *I* is the current during the electrolysis (A) and *t* is the reaction time (s). *Q* is the charge passed during the electrolysis (C).  $c(Glucose)_{prod.}$  is the produced glucose concentration (mol·L<sup>-1</sup>).  $c_0(Glucose)$  is the initial concentration of glucose and  $c_0(Gluconic acid)$  is the initial concentration of gluconic acid (mmol·L<sup>-1</sup>).  $c_0(Glucose)$  and c(Gluconic acid) are the measured glucose and gluconic acid concentrations after the reaction, respectively.  $V_0$  is the initial volume of the catholyte solution (49 mL) and *V* the volume after the reaction.

## III. Supplemental Figures



**Figure S1**. Chronoamperometric curves of 2.5 wt% gluconic acid and 1.5 wt% MgSO4 solution in the H-cell. As setup an Ag working electrode (geometric surface area 3.5 cm<sup>2</sup>), a Pt counter electrode and an Ag/ AgCl (saturated KCl) reference electrode was used. Over the reaction time of 8 hours the reaction potentials were (a) -0.66 V vs. RHE (b) -0.86 V vs. RHE (c) -1.06 V vs. RHE (d) -1.16 V vs. RHE (e) -1.26 V vs. RHE (f) -1.36 V vs. RHE (g) -1.46 V vs. RHE (h) -1.56 V vs. RHE and (i) -1.66 V vs. RE. Duplicates of the reactions at each potential were performed. The potential *versus* the reaction time is shown in the upper part of each diagram and the corresponding current *versus* the reaction time in the lower part.



**Figure S2**. The curves show the Faraday efficiency over the reaction time up to 8 h. A 2.5 wt% gluconic acid and 1.5 wt% MgSO4 solution in an H-cell was used. As setup, an Ag working electrode (geometric surface area 3.5 cm<sup>2</sup>), a Pt counter electrode and an Ag/ AgCI (saturated KCI) reference electrode were used. Over the reaction time of 8 h, the reaction potentials were -0.66 V vs. RHE (black), -0.86 V vs. RHE (red), -1.06 V vs. RHE (blue), -1.16 V vs. RHE (green), -1.26 V vs. RHE (purple), -1.36 V vs. RHE (beige), -1.46 V vs. RHE (turquoise), -1.56 V vs. RHE (brown) and -1.66 V vs. RE (olive).



Figure S3. LEIS spectrum of the silver working electrode after the reaction in the H-cell. The reaction was performed in a 2.5 wt% gluconic acid solution with 1.5 wt% MgSO<sub>4</sub>. The reaction time was 8 h and a 3-electrode setup with an Ag/AgCl (KCl saturated) reference electrode and a Pt mesh counter electrode was used. The spectrum was measured with  $^{20}$ Ne<sup>+</sup> accelerated at 5 keV.

#### **IV.** Experiments

For the experiments with the tin (Sn) and platinum (Pt) as WEs, a 3-electrode setup was used. A platinum mesh was used as CE and an Ag/AgCl (saturated KCl) as RE. The Sn WE had an geometrical surface area of  $3.5 \text{ cm}^2$  and the Pt mesh WE was  $5x5 \text{ cm}^2$ . Both experiments were performed in an H-cell with a 2.5 wt% gluconic acid solution with an electrolyte concentration of 1.5 wt%. The pH was set to 2.5. The reaction time of both experiments was 8 hours. For the experiment with the Sn WE, the potential was set to -1.16 V vs. RHE and for the Pt experiment the potential was -1.06 V vs. RHE. The values and the results are listed in Table S2.

**Table S2:** Summary of the experiments with the initial ( $c_0$ ) and measured concentrations (c) of gluconic acid, glucose and the calculated produced glucose and the conversion rate (CR). The reaction time (t) was 8 h. The experiments were performed in an H-cell. A 3.5 cm<sup>2</sup> tin (Sn) wire and a platinum (Pt) mesh (5x5 cm<sup>2</sup>) were used as WE, a platinum mesh as CE and an Ag/AgCl (saturated KCl) as RE. All reactions were performed in a solution with 2.5 wt% gluconic acid and 1.5 wt% MgSO<sub>4</sub> as electrolyte at a pH of 2.5.

| WE | E / V vs<br>RHE | c₀(Gluconic<br>acid) /<br>mmol L <sup>_1</sup> | c₀(Glucose) /<br>mmol L <sup>_1</sup> | c(Gluconic<br>acid) /<br>mmol L <sup>_1</sup> | c(Glucose) /<br>mmol L <sup>_1</sup> | c(Glucose) <sub>prod.</sub> /<br>mmol L <sup>_1</sup> | CR(Gluconic<br>acid) / % |
|----|-----------------|------------------------------------------------|---------------------------------------|-----------------------------------------------|--------------------------------------|-------------------------------------------------------|--------------------------|
| Sn | -1.16           | 128.56                                         | 0.120                                 | 128.85                                        | 0.141                                | 0.020                                                 | 0.016                    |
| Pt | -1.06           | 127.65                                         | 0.123                                 | 133.17                                        | 0.162                                | 0.033                                                 | 0.025                    |

The experiments showed that with Sn and Pt as WEs, the glucose concentration was less than for the Ag experiments. The produced amount of glucose on the Ag WE was approximately 15 times higher than with Sn as WE. This is in contrast to the electrochemical reduction of  $CO_2$  to CO and formic acid, where Sn is reported as one of the most active materials.<sup>[1]</sup> For the electrochemical reduction of gluconic acid to glucose on Ag, the conversion was 9 times higher than with Pt as electrocatalytic material. Therefore, the Ag WE was chosen as the preferred electrocatalytic material.

#### Reference

[1] Y. Chen, M. W. Kanan, J. Am. Chem. Soc., 2012, 134, 1986–1989.