Supporting Information

Crystal facet dependence of ketonization of propionic acid on anatase TiO₂

Jiao Huang,‡^a Liwen Li,‡^a Xiaoxia Wu,^a Yonghua Guo,^a Zijun Yang,^a Hua Wang,^a Qingfeng Ge^b and Xinli Zhu*^{ac}

^{*a*} Collaborative Innovation Center of Chemical Science and Engineering, Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China ^{*b*} Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, IL, 62901, United States

^c Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China

‡ These authors contributed equally.

* Corresponding Author.

Email address: xinlizhu@tju.edu.cn (X.L. Zhu)

Fig. S1 SEM images for (a) $TiO_2(101)$, (b) $TiO_2(100)$ and (c) $TiO_2(001)$.

Fig. S2 TEM images for $TiO_2(101)$.

Fig. S3 TEM images for $TiO_2(100)$.

Fig. S4 TEM images for TiO₂(001).

Fig. S5 Calculation of facets percentage of $TiO_2(101)$.

a = 2.52 nmb = 11.82 nml = 15.39 nm

$$h^{2} = (\frac{b-a}{2})^{2} + (\frac{l}{2})^{2}$$

$$S_{001} = a^{2}$$

$$S_{101} = \frac{1}{2} \times (a+b) \times h$$
percentage of $101 = \frac{S_{101} \times 8}{S_{101} \times 8 + S_{001} \times 2} = 97.6\%$
percentage of $001 = \frac{S_{001} \times 2}{S_{101} \times 8 + S_{001} \times 2} = 2.4\%$

Fig. S6 Calculation of facets percentage of $TiO_2(100)$.

$$a = 4.30 nm$$

 $b = 8.96 nm$
 $l = 4.07 nm$
 $H = 28.02 nm$

$$h^{2} = \left(\frac{b-a}{2}\right)^{2} + (l)^{2}$$
$$S_{001} = a^{2}$$
$$S_{100} = b \times H$$
$$S_{101} = \frac{1}{2} \times (a+b) \times h$$

$$percentage \ of \ 100 = \frac{S_{100} \times 4}{S_{101} \times 8 + S_{001} \times 2 + S_{100} \times 4} = 77.8\%$$

$$percentage \ of \ 101 = \frac{S_{101} \times 8}{S_{101} \times 8 + S_{001} \times 2 + S_{100} \times 4} = 19.3\%$$

$$percentage \ of \ 001 = \frac{S_{001} \times 2}{S_{101} \times 8 + S_{001} \times 2 + S_{100} \times 4} = 2.9\%$$

Fig. S7 Calculation of facets percentage of $TiO_2(001)$.

a = 57.69 nmb = 63.75 nml = 8.41 nm

$$h^{2} = (\frac{b-a}{2})^{2} + (\frac{l}{2})^{2}$$

$$S_{001} = a^{2}$$

$$S_{101} = \frac{1}{2} \times (a+b) \times h$$
percentage of $001 = \frac{S_{001} \times 2}{S_{101} \times 8 + S_{001} \times 2} = 72.6\%$
percentage of $101 = \frac{S_{101} \times 8}{S_{101} \times 8 + S_{001} \times 2} = 27.4\%$

Fig. S8 X-ray diffraction patterns of spent TiO₂ catalysts. Reaction conditions: T = 350 °C, P_{total} =101.325 kPa, P_{acid} = 4.0 kPa, W/F = 0.2 h, reaction time = 10 h.

Fig. S9 N_2 adsorption and desorption isotherms (a) and BJH pore size distribution (b) on TiO₂ catalysts.

Fig. S10 XPS survey spectra of (a) TiO₂(101), (b) TiO₂(100) and (c) TiO₂(001).

Fig. S11 The estimated Lewis acid sites densities determined by pyridine thermal desorption IR spectra on TiO₂ catalysts at 150 °C, 250 °C and 350 °C.

Fig. S12 Conversion of propionic acid and selectivity of 3-pentanone on the TiO₂ catalysts as a function of temperature. Reaction conditions: $P_{total} = 101.325$ kPa, $P_{acid} = 4.0$ kPa, W/F = 0.05 h.

Entry	Catalysts	Reaction	Conversion	Selectivity	Yield	Reference
		condition	(%)	(%)	(%)	
1	TiO ₂ (101)	а	11.39	100	11.39	this work
2	TiO ₂ (100)	а	7.87	100	7.87	this work
3	TiO ₂ (001)	а	14.92	100	14.92	this work
4	rutile	b	92	95	87.4	
5	brookite	b	56	95	53.2	1
6	anatase	b	10	77	7.7	
7	CeO ₂	с	36.3	99.7	36.1	2
8	CeO ₂ –P	а	11.1	99.6	11.0	3
9	CeO ₂ -UiO-450	а	35.7	99.8	36.6	
10	CeO ₂ -R	а	65.6	>99	64.9	4
11	$Ce_{0.1}Zr_{0.9}O_2$	а	31.7	>95	30.4	5
12	t-ZrO ₂	d	26	>97.5	25.4	6
13	Ca/Zn/AlO _x	e	92	100	92	7
14	Fe ₃ O ₄ /SiO ₂	f	50	59	29.5	8
15	$0.17 La_x Zr_y O_z$	g	30	100	30	9
16	CeFeO _x	h	87	100	87	10
17	Zn-Cr (10:1)	i	70	100	70	11

Table S1 Comparison of ketonization of small carboxylic acid on different oxide catalysts.

a. Reaction conditions: T = 350 °C, P_{total} = 101.325 kPa, P_{acid} = 4.0 kPa, W/F = 0.05 h, and the reactant is propionic acid.

b. Reaction conditions: T = 375 °C, P_{total} = 101.325 kPa, WHSV = 3.24 h⁻¹, and the reactant is propionic acid.

c. Reaction conditions: T = 350 °C, $P_{total} = 101.325$ kPa, W/F = 0.08 h, propionic acid was fed into the reactor at the liquid flow rate of 6.5 cm³·h⁻¹.

d. Reaction conditions: T = 350 °C, P_{total} = 101.325 kPa, P_{acid} = 4.0 kPa, W/F = 0.05 h, and the reactant is propionic acid.

e. Reaction conditions: T = 350 °C, 50 wt.% aqueous AcOH solution was pumped into the reactor with catalyst (100 mg) at a flow rate of 0.4 mL/h with N₂ as carrier gas (10 mL/min).

f. Reaction conditions: T = 410 °C, $P_{total} = 101.325$ kPa. N₂ was employed as the carrier gas (50 mL·min⁻¹) and approximately 50 mg each of Fe₃O₄ and SiO₂ diluted with fused silica granules was used.

g. Reaction conditions: T = 295 °C, WHSV = 3.8 h⁻¹. All of the catalysts were tested at 9800 kPa with a feed composed of 10 wt. % acetic acid in H₂O.

h. Reaction condition: 0.3 g catalyst, 40 mL·min⁻¹ N₂ flow rate, 0.03 mL·min⁻¹ liquid flow rate, TOS = 1 h, W/F = 0.17 h.

i. Reaction condition: 1 bar pressure, 0.2 g catalyst, 20 mL·min⁻¹ N₂ flow rate, 2 vol% propionic acid, 4 h time on stream, W/F = 4 h·g·mol⁻¹, T = 350 °C.

Fig. S13 Thermogravimetric and differential thermogravimetric curves for spent (a) $TiO_2(101)$, (b) $TiO_2(100)$ and (c) $TiO_2(001)$.

Fig. S14 IR spectra of propionic acid saturated adsorption on (a) $TiO_2(101)$, (b) $TiO_2(100)$ and (c) $TiO_2(001)$ at 150 °C.

Fig. S15 IR spectra changes of (a) $TiO_2(101)$, (b) $TiO_2(100)$ and (c) $TiO_2(001)$ with propionic acid saturated adsorption after purging in Ar flow at 150 °C.

Fig. S16 In situ IR spectra on TiO₂(101) at 150 °C-350 °C.

Fig. S17 In situ IR spectra on TiO₂(100) at 150 °C-350 °C.

Fig. S18 In situ IR spectra on $TiO_2(001)$ at 150 °C-350 °C.

Fig. S16-18 show curve fittings of IR spectra (the region of propionates) of TiO_2 catalysts during temperature programmed desorption of propionic acid. Solid lines represent experimental data and short dash lines represent the curve fitting data.

Fig. S19 Evolution of integrated bands areas of monodentate propionate and bidentate propionate based on surface area on (a) $TiO_2(101)$, (b) $TiO_2(100)$ and (c) $TiO_2(001)$ as a function of temperature from 150 °C to 350 °C.

Fig. S20 DFT-determined monodentate propionate on TiO_2 (101), (100), and (001) surfaces at 1/2 ML (PBE + D3). The side and top views are shown in the top and bottom rows, respectively. Light blue, red, gray, and white spheres are Ti, O, C, and H atoms, respectively. The distances in the figure are given in Å. Ti and O atoms and Ti–O bonds in the lower layers are simplified as lines.

Table S2 DFT-surface energy of TiO_2 (101), (100), and (001) surfaces upon adsorption of propionic acid.

	Surface energy-monodentate (J/m ²)					Surface energy-bidentate (J/m ²)		
Acid coverage (ML)	0	1/4	1/2	1		1//4	1/2	
TiO ₂ (101)	0.77	1.16	0.88	0.24		1.16	0.87	
TiO ₂ (100)	0.87	1.43	1.10	0.46		1.33	0.94	
TiO ₂ (001)	1.41	0.88	0.36	-0.21		0.87	0.33	

Fig. S21 Correlation between oxygen vacancy concentration and the intrinsic reaction rate.

Notes and references

- 1. E. V. Fufachev, B. M. Weckhuysen and P. C. A. Bruijnincx, ChemSusChem, 2021, 14, 2710-2720.
- 2. M. Kobune, S. Sato and R. Takahashi, J. Mol. Catal. A: Chem., 2008, 279, 10-19.
- 3. Y. Guo, Q. Yu, H. Fang, H. Wang, J. Han, Q. Ge and X. Zhu, Ind. Eng. Chem. Res., 2020, 59, 17269-17278.
- Y. Guo, Y. Qin, H. Liu, H. Wang, J. Han, X. Zhu and Q. Ge, *ACS Catal.*, 2022, **12**, 2998-3012.
 S. Ding, H. Wang, J. Han, X. Zhu and Q. Ge, Ind. Eng. Chem. Res., 2018, **57**, 17086-17096.
- 6. S. Ding, J. Zhao and Q. Yu, Catalysts, 2019, 9, 768.
- 7. H. Ling, Z. Wang, L. Wang, C. Stampfl, D. Wang, J. Chen and J. Huang, Catal. Today, 2020, 351, 58-67.
- 8. J. A. Bennett, C. M. A. Parlett, M. A. Isaacs, L. J. Durndell, L. Olivi, A. F. Lee and K. Wilson, ChemCatChem, 2017, 9, 1648-1654.
- 9. J. A. Lopez-Ruiz, A. R. Cooper, G. Li and K. O. Albrecht, ACS Catal., 2017, 7, 6400-6412.
- 10. F. Lu, B. Jiang, J. Wang, Z. Huang, Z. Liao and Y. Yang, *Mol. Catal.*, 2018, **444**, 22-33. 11. H. Bayahia, E. F. Kozhevnikova and I. V. Kozhevnikov, *Appl. Catal.*, *B*, 2015, **165**, 253-259.