Electronic Supporting Information

Conditions to meet for the [CuOH]⁺ site to be favorable and reactive toward the conversion of methane to methanol over Cu-MOR zeolite

Muhammad Haris Mahyuddin,^{*,a,b} Elbert Timothy Lasiman,^a Adhitya Gandaryus Saputro,^{a,b} Suci Valerie Casuarina,^a Nugraha,^{a,b} and Hermawan Kresno Dipojono^{a,b}

^a Research Group of Advanced Functional Materials, Faculty of Industrial Technology, Institut Teknologi Bandung, Bandung 40132, Indonesia

^b Research Center for Nanoscience and Nanotechnology, Institut Teknologi Bandung, Bandung 40132, Indonesia

* To whom all correspondences should be addressed

(e-mail: mahyuddin133[at]itb.ac.id).

Table of Contents:

Table S1	Geometrical parameters along the CH_4 oxidation on the 8-MR side pocket
Table S2	Geometrical parameters along the CH_4 activation on the 12-MR opening (Al ₁₄₁ arrangement)
Table S3	Geometrical parameters along the CH_4 activation on the 12-MR opening (Al ₂₄₁ arrangement)
Fig. S1	Small cluster model of CuOH-MOR for molecular orbital calculations
Fig. S2	Structures of \mathbf{TS}_{Ho} and \mathbf{TS}_{He} on CuOH@Al ₄₄
Fig. S3	Considered CuOH-MOR models with the presence of a Cu^{2+} spectator site
Fig. S4	Energy diagram of the heterolytic C–H bond activation on CuOH@Al $_{\rm 241}$
Fig. S5	PDOS for the heterolytic CH_4 activation on the CuOH@Al_{44} and CuOH@Al_{241} sites
Fig. S6	HOH…CH ₃ interaction in INT-1_{Ho} for the CuOH@Al ₄₄ and CuOH@Al ₂₄₁ sites

S1

Reaction step	Ground state	d(Cu-O) (Å)	d(Cu–C) (Å)	d(C–H _{Me}) (Å)	d(О-Н _{ме}) (Å)	ρ(Cu)	ρ(0)	ρ(C)
AS	doublet	1.81	3.23	1.10	2.52	0.54	0.30	0.00
TS _{He}	doublet	1.93	2.17	1.36	1.29	0.46	0.26	0.20
INT-1 _{He}	doublet	2.04	1.94	2.99	0.98	0.53	0.08	0.30
INT-2	doublet	2.09	1.97	2.88	0.98	0.52	0.07	0.29
TS _{Ho}	doublet	1.87	3.56	1.41	1.17	0.18	0.24	0.50
INT-1 _{Ho}	doublet	1.91	3.92	2.00	0.99	0.01	0.06	0.87

Table S1. Geometrical parameters and atomic spin densities (ρ) along the CH₄ oxidation to CH₃OH on the 8-MR side pocket of MOR with the assistance of H₂O.

Table S2. Geometrical parameters and atomic spin densities (ρ) along the CH₄ oxidation to CH₃OH on the 12-MR opening of MOR (Al₁₄₁ arrangement).

Reaction step	Ground state	d(Cu–O) (Å)	d(Cu–C) (Å)	d(C-H _{Me}) (Å)	d(0-H _{Me}) (Å)	ρ(Cu)	ho(Cu _{spec})	ρ(0)	ρ(C)
AS	triplet	1.77	3.29	1.10	2.73	0.58	0.48	0.41	0.00
TS-1 _{He}	triplet	1.91	2.30	1.36	1.29	0.52	0.44	0.26	0.32
INT-1 _{He}	triplet	2.05	2.00	3.70	0.97	0.66	0.41	0.03	0.46
TS-2	singlet	1.80	2.07	3.75	4.65	0.00	0.00	0.00	0.00
FS	singlet	1.46	2.89	4.41	4.55	0.00	0.00	0.00	0.00

Reaction step	Ground state	d(Cu-O) (Å)	d(Cu–C) (Å)	d(C-H _{Me}) (Å)	d(О-Н _{ме}) (Å)	ρ(Cu)	$\rho(Cu_{spec})$	ρ(0)	ρ(C)
AS	triplet	1.77	4.54	1.10	2.64	0.59	0.47	0.39	0.00
TS-1 _{Ho}	triplet	1.86	3.77	1.32	1.26	0.44	0.38	0.31	0.47
INT-1 _{Ho}	triplet	1.92	4.02	1.98	1.00	0.37	0.34	0.06	0.87
INT-2	singlet	1.78	1.95	2.30	4.13	0.00	0.00	0.00	0.00
TS-2	singlet	1.79	2.04	3.70	5.13	0.00	0.00	0.00	0.00
FS	singlet	1.88	2.93	4.60	4.65	0.00	0.00	0.00	0.00

Table S3. Geometrical parameters and atomic spin densities (ρ) along the CH₄ oxidation to CH₃OH on the 12-MR opening of MOR (Al₂₄₁ arrangement).

Fig. S1 Small cluster model of CuOH-MOR for molecular orbital calculations.

Fig. S2 Structures of (a) TS_{Ho} and (b) TS_{He} on CuOH@Al_{44}\!\!\!\!

(a) Cu–OH–Cu Dimer (b) Distant Cu…CuOH (c) Chosen models

Fig. S3 Considered CuOH-MOR models with the presence of a Cu²⁺ spectator site.

Fig. S4 Energy diagram of the heterolytic C-H bond activation on CuOH@Al₂₄₁.

Fig. S5 PDOS of (a,b) **AS**, (c,d) **TS-1**_{He}, and (e,f) **INT-1**_{He} in the respective ground state for the heterolytic CH₄ activation on the (top) CuOH@Al₄₄ and (below) CuOH@Al₂₄₁ sites.

Fig. S6 HOH···CH₃ interaction in INT- 1_{Ho} for the (a) CuOH@Al₄₄ and (b) CuOH@Al₂₄₁ sites.