Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Content

Experimental Section
Figure S1. SEM image of (a) TiO ₂ (b) Pd/TiO ₂ and (c) Pt/TiO ₂ S2
Figure S2. BET surface area and Nitrogen sorption isotherms at 77 K for
Pd ₁ Pt ₁ /TiO ₂
Figure S3. XRD diffraction patterns of other bimetallic photocatalystsS3
Figure S4. (a) core level spectra of C1s of Pd_1Pt_1/TiO_2 . (b) XPS core level
spectra of Pd $3d_{5/2}$ and $3d_{3/2}$ doublet region of Pd/TiO ₂ . (c) Pt $4f_{7/2}$ and $4f_{5/2}$
doublet region of Pt/TiO ₂ S4
Figure S5. VB-XPS plots of (a) Pd/TiO ₂ (b) Pd ₁ Pt ₁ /TiO ₂ (c) Pt/TiO ₂ S5
Table S1. valence band edge potential (E_{VB}) and conductor band edge
potential E _{CB} of various catalystsS5
Table S2. Benzaldehyde formed during photoreaction of benzyl alcohol with
respective catalysts in the absence of amineS5
Table S3. The yields of secondary amine 2d obtained during hydrogenation of
imine 1d in methanol with respective catalystsS6MS spectra of all products
NMR spectra of selected productsS11
Computational Section
Figure S6. Stick model for Pd, Pd ₁ Pt ₁ and Pt clustersS24
Computational Details
References

Experimental Section

Figure S1. SEM image of (a) TiO₂ (b) Pd/TiO₂ and (c) Pt/TiO₂.

Summary Report

Surfa	ace Area
Single point surface area at P/Po = 0.254951315:	11.0895 m²/g
BET Surface Area	: 12.2337 m²/g
Langmuir Surface Area	: 51.2332 m²/g
t-Plot Micropore Area	: 1.0105 m²/g
t-Plot external surface area:	11.2232 m²/g
BJH Adsorption cumulative surface area of pores between 1.7000 nm and 300.0000 nm diameter:	12.8044 m²/g
BJH Desorption cumulative surface area of pores between 1.7000 nm and 300.0000 nm diameter:	12.1893 m²/g
Pore V	olume
t-Plot micropore volume:	0.000138 cm³/g
BJH Adsorption cumulative volume of pores between 1.7000 nm and 300.0000 nm diameter:	0.047246 cm³/g
BJH Desorption cumulative volume of pores between 1.7000 nm and 300.0000 nm diameter:	0.046204 cm³/g
Pore	Size
Adsorption average pore diameter (4V/A by BET):	15.2674 nm
Desorption average pore diameter (4V/A by BET):	5.8623 nm
BJH Adsorption average pore diameter (4V/A):	14.7593 nm
BJH Desorption average pore diameter (4V/A):	15.1620 nm

Figure S2. BET surface area and Nitrogen sorption isotherms at 77 K for Pd₁Pt₁/TiO₂

Figure S3. XRD diffraction patterns of other bimetallic photocatalysts.

Figure S4. (a) core level spectra of C1s of Pd_1Pt_1/TiO_2 . (b) XPS core level spectra of Pd $3d_{5/2}$ and $3d_{3/2}$ doublet region of Pd/TiO₂. (c) Pt $4f_{7/2}$ and $4f_{5/2}$ doublet region of Pt/TiO₂.

Figure S5. VB-XPS plots of (a) Pd/TiO₂ (b) Pd₁Pt₁/TiO₂ (c) Pt/TiO₂.

the E_{VB} of the corresponding standard hydrogen electrode ($E_{VB, NHE}$) can be calculated according to the following formula: $E_{VB, NHE} = \phi + E_{VB, XPS} - 4.44$, where ϕ is the work function of the instrument (4.5 eV).¹

Table S1. valence band edge potential (E_{VB}) and conductor band edge potential E_{CB} of various catalysts.

catalyst	E _{VB} (eV)	E _{CB} (eV)	Band gap (eV)
TiO ₂	2.932	-0.312	3.244
Pd/TiO ₂	2.906	-0.286	3.191
Pd ₂ Pt ₁ /TiO ₂	2.905	-0.285	3.189
Pd ₁ Pt ₁ /TiO ₂	2.891	-0.271	3.161
Pd ₁ Pt ₂ /TiO ₂	2.891	-0.271	3.161
Pt/TiO ₂	2.892	-0.271	3.163

Table	S2.	Benzaldehyde	formed	during	photoreaction	of	benzyl	alcohol	with
respec	tive	catalysts in the	absence	of amin	e.				

1	Pd/TiO ₂	28
2	Pd_2Pt_1/TiO_2	43
3	Pd_1Pt_1/TiO_2	56
4	Pd ₁ Pt ₂ /TiO ₂	65
5	Pt/TiO ₂	71

Reaction conditions: benzyl alcohol (2.1 mmol), MeCN (5 ml), catalyst (10 mg), N_2 , r.t., light irradiation (365 nm LED, 18 mW/cm²), 9 h. The yields were obtained by HPLC.

Table S3. The yields of secondary amine 2d obtained during hydrogenation of

imine 1d in methanol with respective catalysts.

	Id Cata	dyst RT 9h mH ₂ dark
Entry	Catalyst	2d Yields. (%)
1	Pd/TiO ₂	75
2	Pd_2Pt_1/TiO_2	86
3	Pd_1Pt_1/TiO_2	60
4	Pd_1Pt_2/TiO_2	43
5	Pt/TiO ₂	10

Reaction conditions: N-Benzylideneaniline (2.1 mmol), methanol (5 ml), catalyst (10 mg), 1 atm H_2 , r.t., 9 h. The yields were obtained by HPLC.

The details of product analysis and drawing of calibration curve

For aniline products, HPLC was used with calibration (C18 column, 30 °C, λ =254 nm, MeOH mobile phase, 1 mL min⁻¹), and the calibration curve was drawn by measuring the peak area of 0.025, 0.05, 0.1, 0.2, 0.5 mg/ml of standard sample. The calibration curve is as follows, and the HPLC yields were calculated as following formula:

$$HPLC \ yield = \frac{c \times 75 \times 5}{1.4 \times M}$$

Where the "c" represents for concentration obtained from calibration curve, "75" represent for dilution factor; "5" represent for volume of reaction solution; "M" represents for molecular weight of the product. Other products were analyzed by GC-FID using area normalization method.

MS spectra of all products

N,N-Dimethylaniline

N-Benzyldiethylamine

N-Benzylpropanamine

N-Butylaniline

N-Benzylaniline

Dibenzylamine

Diisopropylamine

4-chloro-N,N-dimethylaniline

S8

N,*N*-Diisopropylethylamine

1-Ethylpiperidine

N,N-Dimethylcyclohexanamine

1,2,2,6,6-Pentamethylenepiperidine

N,N-Diethylaniline

Benzyldiisopropylamine

N-isopropylethylamine

N,*N*-Diisopropylmethylamine

N,N-Dimethylcyclohexanamine

N-Methyldiphenylamine

NMR spectra of selected products

N,N-Dimethylaniline

¹H NMR (600 MHz, Chloroform-*d*) δ 7.28 (d, *J* = 5.4 Hz, 2H), 6.78 (dd, *J* = 21.9, 7.8 Hz, 3H), 2.98 (s, 6H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 129.09, 112.79, 40.71.

¹H NMR spectra of N,N-Dimethylaniline

¹³C NMR spectra of N,N-Dimethylaniline

N-Butylaniline

¹H NMR (600 MHz, Chloroform-*d*) δ 7.26 – 7.14 (m, 2H), 6.82 – 6.51 (m, 3H), 3.15 (t, J = 7.1 Hz, 2H), 1.64 (p, J = 7.2 Hz, 2H), 1.47 (h, J = 7.4 Hz, 2H), 1.00 (t, J = 7.4 Hz, 3H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 148.47, 129.23, 117.19, 112.79, 43.77, 31.68, 20.32, 13.91.

¹H NMR spectra of N-Butylaniline

¹³C NMR spectra of N-Butylaniline

N-Benzylaniline

¹H NMR (600 MHz, Chloroform-*d*) δ 7.41 – 7.28 (m, 6H), 7.24 – 7.18 (m, 2H), 6.76 (dddd, *J* = 7.3, 6.2, 3.1, 1.8 Hz, 1H), 6.72 – 6.67 (m, 2H), 4.38 – 4.36 (m, 2H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 129.29, 128.65, 127.57, 127.27, 117.72, 112.99, 48.44.

¹H NMR spectra of N-Benzylaniline

¹³C NMR spectra of N-Benzylaniline

Dibenzylamine

¹H NMR (600 MHz, Chloroform-*d*) δ 7.40 – 7.27 (m, 10H), 3.85 (d, J = 1.2 Hz, 4H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 140.26, 140.22, 128.42, 128.19, 126.98, 53.15, 53.13.

¹H NMR spectra of Dibenzylamine

¹³C NMR spectra of Dibenzylamine

N,N-Diethylaniline

¹H NMR (600 MHz, Chloroform-*d*) δ 7.23 (t, *J* = 7.7 Hz, 2H), 6.77 – 6.55 (m, 3H), 3.38 (q, *J* = 7.0 Hz, 4H), 1.19 (t, *J* = 7.0 Hz, 6H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 147.85, 129.25, 115.37, 111.90, 44.32, 12.57.

¹H NMR spectra of N,N-Diethylaniline

¹³C NMR spectra of N,N-Diethylaniline

N-Benzyldiethylamine

¹H NMR (600 MHz, Chloroform-*d*) δ 7.42 – 7.30 (m, 4H), 7.28 – 7.24 (m, 1H), 3.62 (s, 2H), 2.66 – 2.50 (m, 4H), 1.09 (t, *J* = 6.6 Hz, 6H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 129.00, 128.16, 57.46, 46.70, 11.63.

¹H NMR spectra of N-Benzyldiethylamine

¹³C NMR spectra of N-Benzyldiethylamine

N-benzyl-3-bromoaniline

¹H NMR (600 MHz, Chloroform-*d*) δ 7.43 – 7.30 (m, 5H), 7.04 (t, J = 8.0 Hz, 1H), 6.86 (dt, J = 7.8, 1.2

Hz, 1H), 6.82 (t, J = 2.1 Hz, 1H), 6.57 (dd, J = 8.2, 2.4 Hz, 1H), 4.33 (s, 2H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 149.19, 138.59, 130.52, 128.75, 127.56, 127.54, 127.51, 127.50, 123.29, 120.61, 120.53, 115.60, 111.70, 48.27, 48.22.

¹H NMR spectra of N-benzyl-3-bromoaniline

¹³C NMR spectra of N-benzyl-3-bromoaniline

4-chloro-N,N-dimethylaniline

¹H NMR (600 MHz, Chloroform-*d*) δ 7.24 – 7.17 (m, 2H), 6.70 (t, *J* = 4.4 Hz, 2H), 2.96 (d, *J* = 1.4 Hz, 6H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 128.88, 40.84.

¹³C NMR spectra of 4-chloro-N,N-dimethylaniline

Benzyldiisopropylamine

¹H NMR (600 MHz, Chloroform-*d*) δ 7.41 (d, J = 7.5 Hz, 2H), 7.31 (t, J = 7.5 Hz, 2H), 7.22 (t, J = 7.3 Hz, 1H), 3.67 (s, 2H), 3.06 (dd, J = 12.9, 6.7 Hz, 2H), 1.05 (d, J = 6.6 Hz, 12H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 143.29, 127.96, 127.89, 126.13, 48.91, 47.79, 20.76.

¹H NMR spectra of Benzyldiisopropylamine

¹³C NMR spectra of Benzyldiisopropylamine

N-Methyldiphenylamine

¹H NMR (600 MHz, Chloroform-*d*) δ 7.31 (dddt, J = 8.7, 7.5, 2.8, 1.6 Hz, 4H), 7.10 – 7.03 (m, 4H), 6.99 (dddd, J = 9.7, 7.2, 2.5, 1.3 Hz, 2H), 3.35 (dd, J = 2.8, 1.5 Hz, 3H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 149.03, 129.20, 121.33, 120.48, 40.28.

¹H NMR spectra of N-Methyldiphenylamine

¹³C NMR spectra of N-Methyldiphenylamine

N-Benzylpropanamine

¹H NMR (600 MHz, Chloroform-*d*) δ 7.35 (d, *J* = 4.4 Hz, 4H), 7.28 – 7.24 (m, 1H), 3.82 (s, 2H), 2.63 (t, *J* = 7.2 Hz, 2H), 1.55 (p, *J* = 7.3 Hz, 2H), 1.04 – 0.89 (m, 3H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 140.64, 128.37, 128.11, 126.85, 54.05, 51.39, 23.21, 11.78.

¹H NMR spectra of N-Benzylpropanamine

¹³C NMR spectra of N-Benzylpropanamine

Computational Section

Figure S6. Stick model for Pd, Pd₁Pt₁ and Pt clusters

Computational Details

The structural optimization and the frequency analysis were performed at the GFN-xTB level of the xTB package.^{2,3} Stationary points were optimized without symmetry constraint, and their nature was confirmed by vibrational frequency analysis.⁴ To achieve this, a Gaussian interface to the xTB code "gau_xtb" was employed.⁵ Analysis on the molecular orbitals was performed at the PBE0/def2-SV(P) level of theory using ORCA 4.2 package.⁶

References

1. Li, X.; Kang, B.; Dong, F.; Zhang, Z.; Luo, X.; Han, L.; Huang, J.; Feng, Z.; Chen, Z.; Xu, J.; Peng, B.; Wang, Z. L., Enhanced photocatalytic degradation and H_2/H_2O_2 production performance of S-pCN/WO_{2.72} S-scheme heterojunction with appropriate surface oxygen vacancies. *Nano Energy* **2021**, *81*, 105671.

2. Bannwarth, C.; Ehlert, S.; Grimme, S., GFN2-xTB-An Accurate and Broadly Parametrized Self-Consistent Tight-Binding Quantum Chemical Method with Multipole Electrostatics and Density-Dependent Dispersion Contributions. *J. Chem. Theory Comput.* **2019**, *15* (3), 1652-1671.

3. Grimme, S.; Bannwarth, C.; Shushkov, P., A Robust and Accurate Tight-Binding Quantum Chemical Method for Structures, Vibrational Frequencies, and Noncovalent Interactions of Large Molecular Systems Parametrized for All spd-Block Elements (Z=1-86). *J. Chem. Theory Comput.* **2017**, *13* (5), 1989-2009.

4. Hratchian, H. P.; Schlegel, H. B., Using Hessian updating to increase the efficiency of a Hessian based predictor-corrector reaction path following method. *J. Chem. Theory Comput.* **2005**, *1* (1), 61-69.

5. Tian Lu, gau_xtb: A Gaussian interface for xtb code, <u>http://sobereva.com/soft/gau_xtb</u>.

6. Neese, F. Software Update: the ORCA Program System, Version 4.0. *WIREs Comput. Mol. Sci.* **2018**, 8, e1327.