Supporting Information

Efficient and high *para*-selective conversion of toluene with NO₂ to *para*-nitrotoluene in an O₂-Ac₂O-H β D4 composite catalytic system

Renjie Deng^{1,2,*}, Huajie Liu^{1,2}, Haishuai Cui¹, Yao Tian¹, Hai Yang^{1,2}

¹ College of Material and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, P.R. China

² Hunan Province Key Laboratory of Environmental Catalysis and Waste Rechemistry, Hunan Institute of Engineering, Xiangtan 411104, P.R. China

* Corresponding author

E-mail address: rjdeng@hnie.edu.cn___(R. Deng)

This document contains:

Figure S1. XRD patterns of samples.

Figure S2 TG/DTG curves of samples.

Figure S3. FT-IR spectra of (a) fresh H β (40), (b) H β D1, (c) H β D2, (d)

 $H\beta D3$, (e) $H\beta D4$, (f) $H\beta D6$ samples.

Table S1. Effect of catalyst amount on the nitration reaction.

Table S2. Effect of the amount of Ac_2O in the catalytic nitration reaction.

Table S3 Schematic diagram and size of and various nitration produces

and the pore diameter of treated catalyst.

Figure S1. XRD patterns of samples.

Figure S2. TG/DTG curves of samples.

Figure S3. FT-IR spectra of (a) fresh H β (40), (b) H β D1, (c) H β D2, (d) H β D3, (e) H β D4, (f) H β D6 samples.

Amount of HβD4	Conversion	Selectivity (%)			The ratio
(g)	(%)	o-NT	<i>m</i> -NT	<i>p</i> -NT	of <i>p/o</i>
0.5	69.8	27.7	5.9	66.4	2.4
1	70.1	25.7	5.6	68.7	2.7
1.5	78.1	22.5	5.7	71.8	3.2
2	78.3	22.9	5.5	71.6	3.1
2.5	78.5	22.5	5.6	71.9	3.2

Table S1. Effect of catalyst amount on the nitration reaction ^a.

^a Reaction conditions: reaction temperature was 35 °C, the toluene:NO₂ molar ratio was 1:2, reaction time was 4 h, O₂ pressure was 0.5 MPa, and the amount of Ac_2O was 10.0 g.

Amount of $Ac_2O(g)$	Conversion		- m/a matia		
	(%)	o-NT	m-NT	p-NT	- p/o ratio
1.0	65.3	25.7	6.1	68.2	2.7
5.0	71.4	23.8	5.9	70.3	3.0
10.0	78.1	22.5	5.7	71.8	3.2
15.0	72.3	22.5	5.8	71.7	3.2
20.0	68.5	22.8	5.7	71.5	3.1

Table S2. Effect of the amount of Ac_2O in the catalytic nitration reaction^a.

^a Reaction conditions: reaction temperature was 35 °C, toluene:NO₂ molar ratio was 1:2, reaction time was 4 h, O₂ pressure was 0.5 MPa, and the amount of H β D4 was 1.5 g.

Subtract	Front view	Side view	Minimum diameter of cross section (nm)	Pore diameter of treated catalyst (nm)
Toluene	0.43 nm	0.17 nm	0.43	0.55
<i>o-</i> NT	0.64 nm	0.17 nm	0.61	0.55

 Table S3 Schematic diagram and size of and various nitration produces and the pore diameter of treated catalyst

