Supporting Information

Silver-decorated Palladium on Carbon Catalyst for Enhanced Ammonium Formate Dehydrogenation

Zhun Dong ^a, Ahmad Mukhtar ^a, Thomas Ludwig ^b, Sneha A. Akhade ^b, Wenda Hu ^{a, c}, Jian Zhi Hu ^{a, c}, Katarzyna Grubel ^d, Mark Engelhard ^e, Brandon C. Wood ^b, Tom Autrey ^d, Hongfei Lin ^{a*}

^a Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99163, United States.

^b Materials Sciences Division, Lawrence Livermore National Laboratory (LLNL), Livermore, CA 94550, United States.

^c Institute for Integrated Catalysis, Pacific Northwest National Laboratory (PNNL), Richland, WA 99352, United States.

^d Energy and Environment Division, Pacific Northwest National Laboratory (PNNL), Richland, WA 99352, United States.

^e Environmental & Molecular Sciences, Earth & Biological Sciences, Pacific Northwest National Laboratory (PNNL), Richland, WA 99352, United States.

*Corresponding author: <u>hongfei.lin@wsu.edu</u>

TOF calculation:

$$TOF = \frac{moles \ of \ H_2 \ formed \ at \ a \ certain \ reaction \ time}{(total \ moles \ of \ Pd \ atom) \times \ reaction \ time}$$
(1)

Where, the reaction time is 10 min; total moles of Pd is calculated from Pd loading in the catalyst.

Figure S1. TEM images of a) Pd3Ag10/ACA-G, b) Pd3Ag10/ACA-C, and corresponding nanoparticles size distributions.

Figure S2. HAADF images for Pd3Ag10/ACA-G (Left) and Pd3Ag10/ACA-C (Right).

Figure S3. HAADF-STEM images of Pd5/ACA(a) and Ag3/ACA(b).

Figure S4. XRD spectra of Pd3/ACA, Ag3/ACA, Pd3Ag10/ACA-G, and Pd3Ag10/ACA-C catalyst.

Figure S5. XPS spectra of Pd3Ag10/ACA-G and Pd3Ag10/ACA-C. A) Scan survey. B) O 1s.

Figure S6. GC spectra of gas phase product after dehydrogenation of ammonium formate.

Figure S7. Dehydrogenation of ammonium formate (AF), formic acid (FA), and their mixtures (AF + FA, 50:50) over Pd3Ag10/ACA catalyst. Reaction Conditions: reactants (1M, 20 mL), Catalyst loading (50 mg), Reaction temperature (80 °C), and Stirring speed (500 rpm).

Ret. Time	Area	Height	Gas	Calibration peak area (1 v%)	Concentration (%)
2.548	6284	854	H ₂	451	99.6
3.640	34069	3970	O ₂	-	-
4.757	1280681	69908	N ₂	-	-
12.149	1092	69	CO ₂	17645	0.4

 Table S1. Gas product component tested by GC-TCD.

Figure S8. Comparison of the dehydrogenation activity of the commercial Pd/C, Pd3Ag10/ACA-C, and Pd3Ag10/ACA-G at different reaction temperatures.

Temperature (°C)	TOF (h ⁻¹)
40	1799
60	3487
80	5202

Table S2. Calculated TOFs of Pd3Ag10/ACA-G at different temperatures

Runs	TOF (h ⁻¹)	
1	5202	
2	4864	
3	4340	
4	3884	
5	3242	

Table S3. Calculated TOFs of Pd3Ag10/ACA-G during stability test.

Table S4. Pd dispersion in the catalysts of fresh Pd3Ag10/ACA-G, spent Pd3Ag10/ACA-G after 1st run, and spent Pd3Ag10/ACA-G after 3rd run and Pd and Ag loading (wt%) tested by ICP-MS.

Catalysts	Pd dispersion (%)	Pd loading (%)	Ag loading (%)
Fresh Pd3Ag10/ACA-G	21.4	3.01	9.83
After 1 st run	19.2	-	-
After 3 rd run	17.9	3.00	9.92

Figure S9. Hot filtration curves of formate dehydrogenation over Pd3Ag10/ACA-G. Reaction conditions: 20 mmol ammonium formate, 80 °C, 350 rpm, and 1 atm N2.

Figure S10. Selected in-situ ATR-IR spectra over Pd3Ag10/ACA-G at different temperatures A): 25 °C, B) 60 °C, and C) 80 °C, as a function of time recorded after rinsing a 2 M ammonium formate solution to the spectral cell. The reference spectrum was recorded in the air before the rinse.

Figure S11. Operando ¹³C single pules NMR spectra of formate to bicarbonate reaction over Pd/Ag/AC catalyst (a) full spectra at various reaction temperatures; (b) intensity vertically expanded by 20 times.

Figure S12. PZC of Pd, Ag, and Pd-Ag bimetallic surface calculated with DFT and comparison with publications.