Supporting Information

Photocatalytic conversion of 5hydroxymethylfurfural to 2,5-diformylfuran by Sscheme Black Phosphorus/ CdIn₂S₄ heterojunction

Fig. S1. Zeta potential of BP (a) and $CdIn_2S_4$ (b)

Fig. S2. TEM image of BP, $CdIn_2S_4$ and $BP/CdIn_2S_4$

Fig. S3. EDS spectra of BP/ CdIn₂S₄ heterojunction

Fig. S4. AFM image of BP (a), (b) and $BP/CdIn_2S_4$ (c)

Fig. S5. Cycling runs in the photocatalytic oxidation of 5-HMF on the 1.5% BP/CdIn₂S₄ catalyst under visible light irradiation (a), XRD spectrum of 1.5% BP/CdIn₂S₄ sample before and after photocatalytic reaction.

Fig. S6. EPR spectra: $\cdot O_2^-(a)$, $h^+(b)$.

Fig. S7. The total organic carbon content of the system without and with a hole capture agent.

Fig. S8. Color reaction of H₂O₂.

Fig. S9. Photoluminescence spectra of the $CdIn_2S_4$ and 1.5% BP/ $CdIn_2S_4$.

Table S1

Comparison of	nerein reported	HMF	oxidation t	0 DFF	results	s with	other	photocata	iysts	with

atmospheric oxygen as the oxidant									
Catalyst	Solvent	Reaction conditions	Conv. (%)	Select. (%)	Yield (%)	Ref.			
BP/CdIn ₂ S ₄	XX7. A	500 W Xe lamp	50.4	82.5	41.6	This much			
	w ater	(λ >420 nm), 20 °C, under air	50.4			THIS WOLK			
$Cd_{1.5}In_2S_{4.5}$	Water	500 W Xe lamp		62.7	43.2	543			
		(λ >420 nm), 20 °C, under air	68.8			[1]			
		500 W lamp							
N-TiO ₂	Water	(λ=365 nm), 20 °C,	-	30.0-40.0	-	[2]			
		under air							
$g-C_3N_4$	Water	Sunlight, 25 °C, under air	40.0	50.0	20.0	[2, 3]			
$g\text{-}C_3N_4\text{-}H_2O_2$	Water	Sunlight, 20 °C, under air	20.0	88.0	17.6	[4]			
WO_3/g - C_3N_4	ACN+PhCF ₃	Xe lamp	27.4	87.2	23.9	[5]			
		(λ >400 nm), 30 °C, O ₂ purging	27.7			[3]			
$Zn_xCd_{1-x}S-P$	Water	Visible light	40.0	65.0	26.0	[6]			
Fe(III)/Bi ₂ M oO ₆	Water	500 W Xe lamp	32.6	95.3	31.1	[7]			
		(λ>400 nm)	52.0			L'J			

References:

[1] M. Zhang, Z. Yu, J. Xiong, R. Zhang, X. Liu, X. Lu, One-step hydrothermal synthesis of $Cd_xIn_yS_{(x+1.5y)}$ for photocatalytic oxidation of biomass-derived 5-hydroxymethylfurfural to 2, 5-diformylfuran under ambient conditions, Appl. Catal. B, 300 (2022) 120738. http://dx.doi.org/10.1016/j.apcatb.2021.120738

[2] B. Zhou, J. Song, Z. Zhang, Z. Jiang, P. Zhang, B. Han, Highly selective photocatalytic oxidation of biomass-derived chemicals to carboxyl compounds over Au/TiO2, GREEN CHEM, 19 (2017) 1075-1081. http://dx.doi.org/10.1039/C6GC03022J

[3] I. Krivtsov, E.I. García-López, G. Marcì, L. Palmisano, Z. Amghouz, J.R. García, S. Ordóñez, E. Díaz, Selective photocatalytic oxidation of 5-hydroxymethyl-2-furfural to 2,5-furandicarboxyaldehyde in aqueous suspension of g-C3N4, Appl. Catal. B, 204 (2017) 430-439.

http://dx.doi.org/10.1016/j.apcatb.2016.11.049

[4] M. Ilkaeva, I. Krivtsov, E.I. García-López, G. Marcì, O. Khainakova, J.R. García, L. Palmisano, E. Díaz, S. Ordóñez, Selective photocatalytic oxidation of 5-hydroxymethylfurfural to 2,5-

furandicarboxaldehyde by polymeric carbon nitride-hydrogen peroxide adduct, J CATAL, 359 (2018) 212-222. http://dx.doi.org/10.1016/j.jcat.2018.01.012

[5] H. Zhang, Z. Feng, Y. Zhu, Y. Wu, T. Wu, Photocatalytic selective oxidation of biomass-derived 5hydroxymethylfurfural to 2,5-diformylfuran on WO₃/g-C₃N₄ composite under irradiation of visible light, J PHOTOCH PHOTOBIO A, 371 (2019) 1-9.

http://dx.doi.org/10.1016/j.jphotochem.2018.10.044

[6] H. Ye, R. Shi, X. Yang, W. Fu, Y. Chen, P-doped Zn_xCd_{1-x}S solid solutions as photocatalysts for

hydrogen evolution from water splitting coupled with photocatalytic oxidation of 5hydroxymethylfurfural, Applied Catalysis B: Environmental, 233 (2018) 70-79. http://dx.doi.org/10.1016/j.apcatb.2018.03.060

[7] J. Xue, C. Huang, Y. Zong, J. Gu, M. Wang, S. Ma, Fe (III) - grafted Bi2MoO6 nanoplates for enhanced photocatalytic activities on tetracycline degradation and HMF oxidation, APPL ORGANOMET CHEM, 33 (2019). http://dx.doi.org/10.1002/aoc.5187