Supporting information

Dual-phase Ce_{0.8}Sm_{0.2}O_{2-δ}-La_{0.8}Ca_{0.2}Al_{0.3}Fe_{0.7}O_{3-δ}oxygen permeation hollow fiber membrane for oxy-CO₂ reforming of methane

Yuepeng Hei¹, Shuang Wu¹, Zuojun Lu¹, Xiuxia Meng¹, Jian Song^{1,*}, Naitao Yang¹, Bo Meng¹, Claudia Li³, Jaka Sunarso⁴, Sibudjing Kawi³, Xiaoyao Tan², Shaomin Liu^{2,*}

¹ Department of Chemical Engineering, Shandong University of Technology, Zibo 255049, China

² State Key Laboratory of Separation Membranes and Membrane Processes, Department of Chemical Engineering, Tiangong University, Tianjin 300387, China

³ Department of Chemical & Biomolecular Engineering, National University of Singapore, 117585, Singapore

⁴ Research Centre for Sustainable Technologies, Faculty of Engineering, Computing and Science, Swinburne University of Technology, Jalan Simpang Tiga, 93350, Kuching, Sarawak, Malaysia

*Corresponding authors: jian.song@sdut.edu.cn (J. Song);

Shaomin.Liu@curtin.edu.au

Tel: +86-533-2781681;

Fig. S1 Electrical conductivity of SDC and SDC-LCAF membrane materials in air atmosphere as a function of temperature.

Fig. S2 (A-C) Morphology of NiO/SDC-LCAF catalyst with different Ni content before and after hydrogen reduction, (D) Ni distribution patterns of Fig. C (A, before reduction; B and C after reduction. 1, 10 wt.%; 2, 20 wt.%; 3, 30 wt.%; 4, 40 wt.%).

Fig. S3 DRM catalytic performance of catalysts with different Ni contents: (A) CH₄ and (B) CO₂ conversion, (C) CO and (D) H₂ selectivity, (E) H₂/CO molar ratio, and (F) carbon balance (feed gas was 50 mL min⁻¹ CH₄ and 50 mL min⁻¹ CO₂).

Fig. S4 Oxygen permeation fluxes of SDC-LCAF hollow fiber membrane at different air feed flow rates (900 °C, He sweep flow rate was 100 mL min⁻¹).

Fig. S5 Effect of He sweep flow rate on oxygen flux of LCAF-SDC hollow fiber membrane as a function of temperature (Air feed flow rate was 100 mL min⁻¹).

Fig. S6 DRM stability of SDC-LCAF HFM reactor at 900 °C (flow rate of CH4-CO2-He was 10-10-20 mL min-1, respectively).

Fig. S7 TGA curves of catalysts before and after reduction.

Fig. S8 EDS mapping of spent catalysts after (A) OCRM and (B) DRM.