Electronic Supplementary Information

Photothermal-enhanced solar water oxidation on NiO/amorphous

carbon/BiVO₄ and CoOx/amorphous carbon/BiVO₄ photoanodes

Huichao He,‡^a Yuli Xiong,‡^b Hao Xiao,^a Tao Han,^a Yujie Guo,^a Jiahe Li,^a Qiwen Chen,^a Yunhuai Zhang,^{c*} Jinyan Du^{d*} and Gaili Ke^{ad*}

^aSchool of Metallurgy and Materials Engineering, Chongqing University of Science and Technology. Chongqing 401331, China.

^bCollege of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 401331, China.

^cCollege of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China.

^dState Key Laboratory of Environmental Friendly Energy Materials, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang 621010, China.

‡These authors contributed equally to this work Corresponding Authors' Email: kgl.xzy@163.com (Gaili Ke) xp2031@163.com (Yunhuai Zhang) jinyandu990218@163.com (Jinyan Du)

Fig. S1 Photographs of $BiVO_4$, $C/BiVO_4$, $CoO_x/C/BiVO_4$ and $NiO/C/BiVO_4$ film.

Fig. S2 XRD pattern of C/FTO film. The C/FTO film was prepared by the similar candle flame roasting approach for the preparation of NiO/C/BiVO₄ and $CoO_x/C/BiVO_4$ film.

Fig. S4 Survey XPS spectrum of (a) $CoO_x/C/BiVO_4$ and $NiO/C/BiVO_4$, (b) $BiVO_4$ and $C/BiVO_4$ film.

Fig. S5 (a) Survey XPS spectrum of $BiVO_4$ film. (b-g) High-resolution Bi 4f and V 2p XPS spectrum collected from $BiVO_4$, $NiO/C/BiVO_4$ and $CoO_x/C/BiVO_4$ film.

Fig. S6 LSV curves of the BiVO₄, (a) $CoO_x/C/BiVO_4$ and (b) NiO/C/BiVO₄ film in 0.1 M NaPi buffer under and without AM 1.5G irradiation. The $CoO_x/C/BiVO_4$ and NiO/C/BiVO₄ films were prepared using Ni²⁺- or Co²⁺-containing solution with different concentrations (0.1 M, 0.5 M, 1.0 M and 1.5 M). (c) The curves of O₂ generation *vs.* reaction time, and (b) faradic efficiency of oxygen evolution reaction for the BiVO₄, C/BiVO₄, CoO_x/C/BiVO₄ and (b) NiO/C/BiVO₄ film in 0.1 M NaPi buffer under AM 1.5G irradiation at 1.23 V *vs.* RHE.

Fig. S7 LSV curves for $BiVO_4$, $C/BiVO_4$, $NiO/BiVO_4$, $CoO_x/BiVO_4$, $NiO/C/BiVO_4$ and $CoO_x/C/BiVO_4$ film in 0.1 M NaPi-1.0 M Na₂SO₃ under and without AM 1.5G irradiation, the scan rate was 15 mV/s.

Fig. S8 The $\Delta I \sim v$ plots used for the calculation of double-layer capacitance (C_{dl}) for (a) BiVO₄, (b) CoO_x/C/BiVO₄, (c) NiO/C/BiVO₄ and (d) FTO electrode at 0.85 V vs. RHE.

Fig. S9 The time-temperature curves of $BiVO_4$, $C/BiVO_4$, $CoO_x/C/BiVO_4$ and $NiO/C/BiVO_4$ film under AM 1.5G irradiation.

Fig.S10 LSV scans for (a) $BiVO_4$, (b) $C/BiVO_4$, (c) $NiO/C/BiVO_4$ and (d) $CoO_x/C/BiVO_4$ film electrodes in 0.1 M NaPi buffer under AM 1.5G/near infrared light irradiation (808 nm, $1W/cm^2$).

Fig. S11 LSV and Tafel curve of (a) $BiVO_4$ and (b) $C/BiVO_4$ film electrodes in 0.1 M NaPi buffer in dark condition with near infrared light irradiation (808 nm, $1W/cm^2$).