Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2023

Support Information

NO reduction by CO over NiO_x/CeO_2 catalyst with fixed Ni surface density: Pretreatment effect on catalyst structure and catalytic activity

Kyung-Min Lee^{I,a}, Byeongseok Kim^{I,a,b}, Juwon Lee^{a,b}, Gihan Kwon^c, Kwangsuk Yoon^d, Hocheol Song^d, Kyung Hoon Min^b, Sang Eun Shim^b, Sungwon Hwang^b, and Taejin Kim^{*,a}

^a Materials Science and Chemical Engineering Department, Stony Brook University, Stony Brook, NY, 11794, U.S.A

^b Department of Chemistry and Chemical Engineering, Education and Research Center for Smart Energy and Materials, Inha University, Incheon, 22212, South Korea

^c National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, U.S.A

^d Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea

^H co-first author, ^{*} corresponding author

Corresponding Author: * TJK: Materials Science and Chemical Engineering Department, Stony Brook University, Stony Brook, NY 11794, <u>taejin.kim@stonybrook.edu</u>

Catalyst	Gas composition		GHSV	T _{NO,50} *	T _{CO,50} **	D-f
	NO (%)	CO (%)	(ml/g/h)	(°C)	(°C)	кет.
Pt/CeO ₂	0.5	0.5	31,200	333	344	1
Cr/CeO ₂	0.15	0.15	120,000	498	403	2
FeO _x /CeO ₂	5	5	60,000	228	442	3
CuO/CeO ₂	0.5	0.5	30,860	222	294	4
CuO/CeO ₂	5	10	24,000	140		5
CuO/CeO ₂	5	10	12,000	125		6
CuO/CeO ₂	5	10	15,000	139		6
CuO/CeO ₂	5	10	18,000	157		6
NiO/CeO ₂	5	5	120,000	172	148	7
NiO/γ-Al ₂ O ₃	0.25	0.25	45,000	446	438	7
NiO/TiO ₂	0.25	0.25	45,000	480	470	7
Pd/CeZrO ₂	1	1	150,000	102	140	8
Pd/Al ₂ O ₃	1	1	150,000	279	298	8
CuO/MnO	5	10	24,000	167	340	9
MnO _x	5	10	24,000	215	400	9
CeZrO	5	10	12,000	375		10
CuO/CeZrO	5	10	12,000	211		10
CuO/TiO ₂	6	6	42,000	290		11
CuO/ZrO ₂ /TiO ₂	6	6	42,000	207		11
5.3 NiO _x /CeO ₂ -400Oxi	5	5	60,000	165	175	This Study

Table S1. Catalytic performance comparison with previous works for the NO reduction by CO reaction.

* Reaction temperature at which 50% of the NO was converted.

** Reaction temperature at which 50% of the CO was converted.

References

1 H.-o. Zhu, J.-R. Kim, and S.-K. Ihm, Applied Catalysis B: Environmental, 2009, 86, 87-92.

2 H. Yoshida, Y. Okabe, N. Yamashita, S. Hinokuma, and M. Machida, Catalysis Today, 2017, 281, 590-595.

3 S. Zhang and T. Kim, Molecular Catalysis, 2020, 494, 111123.

4 J. Chen, Y. Zhan, J. Zhu, C. Chen, X. Lin, and Q. Zheng, Applied Catalysis A: General, 2010, 377, 121-127.

5 X. Yao, F. Gao, Q. Yu, L. Qi, C. Tang, L. Dong, and Y. Chen, Catalysis Science and Technology, 2013, 3, 1355

6 L. Liu, Z. Yao, F. Gao, B. Liu, and L. Dong, ChemCatChem, 2011, 3, 978-989

7 Y. Wang, A. Zhu, Y. Zhang, C. Au, X. Yang and C. Shi, Applied Catalysis B: Environmental, 2008, 81, 141-149.

8 X. Chen, Y. Lyu, U. Nwabara and J. W. Schwank, Catalysis Today, 2019, 323, 148-158

9 T. Liu, Y. Yao, L. Wei, Z. Shi, L. Han, H. Yuan, B. Li, L. Dong, F. Wang, and C. Sun, The Journal of Physical Chemistry C, 2017, 121, 12757-12770

10 L. Liu, Z. Yao, B. Liu, and L. Dong, Journal of Catalysis, 2010, 275, 45-60

11 J. Xiaoyuan, D. Guanghui, L. Liping, C. Yingxu, and Z. Xiaoming, Journal of Molecular Catalysis A: Chemical, 2004, 218, 187-195