ELECTRONIC SUPPLEMENTARY INFORMATION

Tuning the Catalytic Performance of CaSnO₃ by Developing S-Scheme P-N Heterojunction through Ag₆Si₂O₇ Doping

Navid Hussain Shah¹, Muhammad Abbas², Muhammad Sulman³, Muhammad Qasim⁴, Muhammad Imran^{4*}, Sohail Azmat⁵, Yanyan Cui^{*}, Yaling Wang^{1*}

^{1,2, *} Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China

^{1*} CAS Key Laboratory for Biomedical effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, 100190, China

³ School of Physics Beijing institute of Technology Beijing 100081, China

^{4*} Beijing key Laboratory of Environmental science & Engineering, School of Material science & Engineering, Beijing institute of Technology Beijing 100081, China

⁵ Department of Chemistry, University of Bari Aldo Moro, Bari, Italy

, 1 Correspondence: <u>cuiyanyan@bit.edu.cn</u> (Y.C); <u>wangyl@nanoctr.cn</u> (Y.W);

Email:

navidshah742@gmail.com

Sr#	SAMPLE	FWMH	AVERAGE CRYSTALLINE SIZE D (nm)
1	CaSnO ₃	0.1606	53.63596426
2	$Ag_6Si_2O_7$	0.5375	22.40214328
3	AgCS-F	0.2010	44.67589422
4	AgCS-G	0.2106	43.42165199
5	AgCS-H	0.4241	41.14970216
6	AgCS-I	0.5274	40.87710789
7	AgCS-J	0.5488	38.04289865

Table S1. The average crystal size "D" and FWMH

Serial Number	Samples	BET Surface Area (m ² /g)	
1	CaSnO ₃	2.2642	
2	$Ag_6Si_2O_7$	2.5541	
3	AgCS-F	5.3318	
4	AgCS-G	7.1742	
5	AgCS-H	5.4962	
6	AgCS-I	6.2450	
7	AgCS-J	8.7899	

 Table S2 BET-specific surface areas of the photocatalysts.

Serial Number	Samples	Bandgap (eV)	
1	CaSnO ₃	3.73	
2	$Ag_6Si_2O_7$	2.31	
3	AgCS-F	3.37	
4	AgCS-G	3.36	
5	AgCS-H	3.27	
6	AgCS-I	3.22	
7	AgCS-J	3.20	
	6		

Table S3. The bandgap of the $CaSnO_3$ and $Ag_6Si_2O_7$ and their composites

Table S4. The rate constants for the photocatalytic degradation of Rhodamine B for $Ag_6Si_2O_7$, $CaSnO_3$ and their composites under visible light irradiation.

SAMPLE	K (min ⁻¹)	
CaSnO ₃	0.00203	
$Ag_6Si_2O_7$	0.02044	
AgCS-F	0.02452	
AgCS-G	0.02167	
AgCS-H	0.04971	
AgCS-I	0.03737	
AgCS-J	0.04155	

FIGURE S1 (a-b) The plots of average crystal size "D" and FWHM

FIGURE S3 The XRD spectra elucidate the stability and reusability of AgCS-H sample

FIGURE S4 (a,b,c) The XPS Deconvolution high resolution spectra of Si, C and O.

FIGURE S5 (a-d) Plots of degradation of Rhodamine B graphs for AgS, CS and their composites

FIGURE S6 (a-b) MS plots of samples (a) $CaSnO_3$ and (b) $Ag_6Si_2O_7$

FIGURE S7 (a) Plot of an eminent peak of absorption at 554 nm for RhB dye (b) the current density plot of CS, AgS and AgCS-H

Figure S8 (a) Cycling experiments and (b) rate constants for AgS, CS and their composites under visible light irradiation. ESR analysis of AgCS-H sample

Figure S9. Photocatalytic activities of AGCS-H photocatalyst by different scavengers under UV–visible light irradiation.