Supporting Information

Sulfur Poisoning and NH₃ Regeneration of Pt/Al₂O₃ Monolith Catalyst

Chenhao Fang and Michael P. Harold*

 William A. Brookshire Department of Chemical & Biomolecular Engineering, University of Houston, Houston, Texas 77204, (USA),
*Corresponding author e-mail: <u>mpharold@central.uh.edu</u>

Fig. S1 SO₂ TPD profiles for Al_2O_3 and Pt/Al_2O_3 (a) concentration versus time and (b) concentration versus temperature.

Sample	SO ₂ adsorbed (µmol)	SO ₂ desorbed (µmol)
Al ₂ O ₃	4.66	4.29
Pt/Al ₂ O ₃	8.78	8.7

Table S1 Amount of SO₂ adsorbed and desorbed during SO₂ TPD in Ar

Fig. S2 Steady-state (a) NO yield, (b) N_2O yield, (c) N_2 yield over fresh and poisoned Pt/Al_2O_3 catalyst which is sulfur poisoned in the absence of water.

Fig. S3 Steady-state (a) NO yield, (b) N_2O yield, (c) N_2 yield over fresh and poisoned Pt/Al₂O₃ catalyst which is sulfur poisoned in the presence of water.

Fig. S4 Steady-state NH₃ oxidation over fresh and various sulfur aged catalyst.

S5. Adiabatic temperature rise for NH₃ oxidation

In this section, the adiabatic temperature rise for NH₃ oxidation taking place during typical light-off experiments is estimated. Considering the following reaction of NH₃ oxidation over Pt:

$$4 \text{ NH}_3 + 3 \text{ O}_2 \rightarrow 2 \text{ N}_2 + 6 \text{ H}_2\text{O}$$
 $\Delta \text{H} = -2.26 \text{ x } 10^5 \text{ J/mole NH}_3$

The adiabatic temperature rise is determined from:

$$\Delta T = \frac{(-\Delta H)C_{0,NH3}}{\rho_g C_{pg}} \Delta X$$

where

 ΔH = enthalpy of reaction (kJ/mole NH₃)

 $C_{0,NH3}$ = Molar concentration of NH₃ (mole/m³)

 ρ_g = Density of reacting gas (kg/m³)

 C_{pg} = Specific heat of the reacting gas (kJ/kg/K)

 $\Delta X = NH_3$ conversion

We evaluate the case of high NH₃ concentration feed at complete NH₃ conversion.

Case 1: 5000 ppm NH₃, 10 vol. % O₂, balance Argon @ 100% ammonia conversion for washcoated monolith

$$\Delta T = \frac{(-\Delta H)C_{0,NH3}}{\rho_g C_{pg}} \Delta X = \frac{(226) * 0.22}{1.7307 * 0.61} * 1 = 48 K$$