## Supporting Information

## Cu nanoparticles confined in siliceous MFI zeolite for methanol steam reforming

Yang Hong<sup>a,b</sup>, Yijun Zheng<sup>a</sup>, Nana Yan<sup>a,b</sup>, Xiaona Liu<sup>a,b</sup>, Peng Guo,\* <sup>a,b</sup> Zhongmin, Liu<sup>a,b</sup>

<sup>a.</sup> National Engineering Research Center of Lower-Carbon Catalysis Technology, State Energy Low Carbon Catalysis and Engineering R&D Center, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Dalian, China.

b. University of Chinese Academy of Sciences. Beijing, China.



Fig. S1.  $N_2$  adsorption–desorption isotherms of 1.0 Cu@S-1  $\,$ 



Fig. S2. HAADF-STEM image and corresponding Cu nanoparticles size distribution of the calcined 1.0 Cu/S-1



Fig. S3. H<sub>2</sub>-TPR profile of 1.0 Cu@S-1, 1.0 Cu/S-1 and 1.25 Cu@S-1



Fig. S4. Stability of 1.0 Cu@S-1, 1.0 Cu/S-1 and CuZnO/SiO<sub>2</sub> at 300°C (Reaction condition: 44% methanol, N<sub>2</sub> at a rate of 34 ml/min, WHSV =  $4.55h^{-1}$ , 1 atm.)



Fig. S5. TOS-dependent MSR performance of 1.0 Cu@S-1 catalyst under different temperature. (Reaction condition: 44% methanol, N<sub>2</sub> at a rate of 34 ml/min, WHSV =  $4.55h^{-1}$ , 1 atm.)



Fig. S6. In-situ CO-FTIR spectra of the reduced 1.0 Cu@S-1 and 1.0 Cu/S-1.



Fig. S7. TGA results of the spent 1.0 Cu@S-1 and 1.0 Cu/S-1



Fig. S8. HAADF-STEM image and corresponding Cu nanoparticles size distribution of the spent 1.0 Cu@S-1



Fig. S9. HAADF-STEM image and corresponding Cu nanoparticles size distribution of the spent 1.0 Cu/S-1



Fig. S10. The XRD pattern of the CuZnO/SiO<sub>2</sub>.

| Sample                 | Cu loading             | Surface area <sup>b</sup>   |                      | Pore volume        |                  | D (0/)         |
|------------------------|------------------------|-----------------------------|----------------------|--------------------|------------------|----------------|
|                        | wt%a                   | $\mathbf{S}_{\mathrm{BET}}$ | $\mathbf{S}_{micro}$ | V <sub>micro</sub> | V <sub>ext</sub> | $- D_{Cu}(70)$ |
| 0.25 Cu@S-1            | 0.26                   | 324                         | 227                  | 0.11               | 0.08             | -              |
| 0.50 Cu@S-1            | 0.53                   | 350                         | 228                  | 0.12               | 0.08             | -              |
| 0.75 Cu@S-1            | 0.73                   | 368                         | 246                  | 0.11               | 0.08             | -              |
| 1.0 Cu@S-1             | 1.05/1.05 <sup>c</sup> | 356                         | 265                  | 0.13               | 0.06             | 62.1           |
| 1.25 Cu@S-1            | 1.21                   | 365                         | 243                  | 0.12               | 0.08             | 48.9           |
| 1.0 Cu/S-1             | 1.03                   | 358                         | 198                  | 0.10               | 0.10             | 39.4           |
| CuZnO/SiO <sub>2</sub> | $1.18/1.18^{d}$        |                             |                      |                    |                  |                |

Table S1 Cu loading and BET surface of the as-synthesized catalyst

 $^a$  Determined by XRF.  $^b$  S\_{BET}: BET surface area, S\_{micro}: t-plot microporous surface area.

<sup>c</sup> Determined by ICP-OES analysis.

<sup>d</sup> the loading of Zn, determined by XRF