Supporting Information

Fourteen-Membered Macrocyclic Cobalt Complex for the Electrolysis of Low-Concentration Gaseous Carbon Dioxide with High Faradic Efficiency Toward Carbon Monoxide

Takeshi Inada,[†] Shoji Iguchi,^{†*} Masahiro Yamamoto,[†] Yusuke Hasegawa,[†] Makoto Moriya,^{‡^} Junya Ohyama,^{II} Yuta Nabae,⁺ Shimpei Naniwa,[†] Tsunehiro Tanaka,^{†#} and Kentaro Teramura ^{†#§*}

[†]Graduate School of Engineering, Kyoto University

[‡]College of Science, Academic Institute, Shizuoka University

[^]Research Institute of Green Science and Technology, Shizuoka University

Faculty of Advanced Science and Technology, Kumamoto University

*Department of Materials Science and Engineering, Tokyo Institute of Technology

*Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University

§Fukui Institute for Fundamental Chemistry (FIFC), Kyoto University.

Table of Contents

Figure S1.	Schematic illustration of the electrolysis cell for CO ₂ reduction using a GDE cathode.
Figure S2.	Co 2p X-ray photoelectron spectra of (a) Co powder, (b) Co-14MR, and (c) Co(OH) ₂
Figure S3.	SEM image and characteristic X-ray mappings of Co of Co-14MR/KB cathode.
Figure S4.	Time courses of the current density and Faradic efficiency for CO in the potentiostatic electrolysis
	of CO ₂ using Co-14MR/KB and CoTPP/KB.
Figure S5.	TCD-GC/Q-MS profiles for the isotope labelling experiment for CO ₂ electrolysis using the
	Co-14MR cathode.
Figure S6.	Time courses of the cathode potential and Faradic efficiency of CO in the galvanostatic CO ₂
	electrolysis at 100 mA cm ⁻² using Co-14MR and CoPc as cathode catalysts.
Figure S7.	In-situ XANES spectra of Co-14MR/KB cathode and photographs of CoPc/KB cathode.
Figure S8.	The formation rate of CO and H ₂ in the potentiostatic electrolysis at -1.65 V (Ag/AgCI) under a CO ₂
	atmosphere (CO ₂ electrolysis condition) and an Ar atmosphere (H ₂ O electrolysis condition),
	respectively, using Co-14MR/KB, CoPc/KB, and Co/KB cathodes.
Table S1.	Summary of low concentration CO ₂ electrolysis using Co-14MR/KB, CoPc/KB, and Co/KB

 Table S1.
 Summary of low concentration CO₂ electrolysis using Co-14MR/KB, CoPc/KB, and Co/KB cathodes.

Figure S1. Schematic illustration of the electrolysis cell for CO_2 reduction using a GDE cathode. The paths of gas flow are indicated in pink. Gaseous products in the outlet gas were quantified by using on-line gas chromatography. For example, formation rate of CO was calculated by using following equation.

Formation rate of CO / mol s⁻¹ = $\frac{\text{Amount of CO in GC analysis / mol} \times \text{Injected volume of the outlet gas / mL}}{\text{Total flow rate of the outlet gas / mL s⁻¹}}$

Figure S2. Co 2p X-ray photoelectron spectra of (a) Co powder, (b) Co–14MR, and (c) Co(OH)₂ measured by ESCA-3400 (Shimadzu Co. Ltd.) using Mg K α as an X-ray source. Binding energy of spectra were calibrated by Au 4f peak, which was deposited on the samples prior to use.

Figure S3. (a) SEM image and characteristic X-ray mappings corresponding to (b) C, (c) N, and (d) Co of Co-14MR/KB cathode.

Figure S4. Time courses of the current density (circles) and Faradic efficiency for CO (diamonds) in the potentiostatic electrolysis of CO₂ using Co-14MR/KB (red) and CoTPP/KB (black) as cathode catalysts. Cathode potential: -1.65 V (Ag/AgCl, pH = 14); CO₂ supply to chamber 1: 10 mL min⁻¹; electrolyte solution of chamber 2 and 3: 1.0 M KOH aq.; electrode area (cathode): 1.9 cm².

Figure S5. TCD-GC/Q-MS profiles for the isotope labelling experiment for CO₂ electrolysis using the Co-14MR cathode. (a) Chromatogram of TCD-GC. (b) and (c) MS profile of m/z = 2 (green), 28 (blue), and 29 (red). (b) and (c) were the results of the electrolysis of standard CO₂ and ¹³C-labeled CO₂, respectively. The peak at 4 min in (a) and broad peaks starting at 4 min in m/z = 28 of (b) and m/z = 29 of (c) corresponded to CO.

Figure S6. Time courses of the cathode potential and Faradic efficiency of CO in the galvanostatic CO_2 electrolysis at 100 mA cm⁻² using Co-14MR (red) and CoPc (blue) as cathode catalysts.

Figure S7. (A) *In-situ* XANES spectra of Co-14MR/KB cathode (a) before the electrolysis, during the potentiostatic electrolysis under He atmosphere at (b) -0.6 V (Ag/AgCl), (c) -0.9 V (Ag/AgCl), (d) -1.25 V (Ag/AgCl), (e) -1.65 V (Ag/AgCl), (f) under CO₂ atmosphere at -1.25 V (Ag/AgCl), and (g) after the electrolysis. (B) Photographs of CoPc/KB cathode (a) before the electrolysis and (b) after the electrolysis.

Figure S8. The formation rate of CO (red) and H_2 (blue) in the potentiostatic electrolysis at -1.65 V (Ag/AgCl) under a CO₂ atmosphere (CO₂ electrolysis condition) and an Ar atmosphere (H₂O electrolysis condition), respectively. (a) Co-14MR/KB, (b) CoPc/KB, and (c) Co/KB cathodes.

Table S1. Summary of low concentration CO₂ electrolysis using Co-14MR/KB, CoPc/KB, and Co/KB cathodes. Cathode potential: -1.65 V (Ag/AgCl, pH = 14); CO₂/Ar supply to chamber 1: 10 mL min⁻¹; electrolyte solution of chamber 2 and 3: 1.0 M KOH aq.; electrode area (cathode): 1.9 cm². *I*_d: current density, *FE*_{CO}: Faradic efficiency of CO.

CO concentration		Cathode catalyst		
CO_2 con		Co-14MR/KB	CoPc/KB	Co/KB
25 % CO ₂	$I_{\rm d}$ / mA cm ⁻²	34.5	23.4	23.3
	<i>FE</i> _{CO} (%)	97	76.0	0.24
10 % CO ₂	$I_{\rm d}$ / mA cm ⁻²	26.7	20.4	25.0
	$FE_{\rm CO}$ (%)	95	58.5	0.04
5 % CO ₂	$I_{\rm d}$ / mA cm ⁻²	21.3	19.8	26.8
	$FE_{\rm CO}$ (%)	88	36.3	0.02
1 % CO ₂	$I_{\rm d}$ / mA cm ⁻²	12.8	25.3	33.6
	<i>FE</i> _{CO} (%)	41	3.3	0
0 % CO ₂	$I_{\rm d}$ / mA cm ⁻²	18.4	30.3	33.2
	FE_{CO} (%)	0	0	0