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Figure S1. Schematic illustration of the electrolysis cell for CO2 reduction using a GDE cathode. The paths 
of gas flow are indicated in pink. Gaseous products in the outlet gas were quantified by using on-line gas 
chromatography. For example, formation rate of CO was calculated by using following equation. 
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Figure S2. Co 2p X-ray photoelectron spectra of (a) Co powder, (b) Co−14MR, and (c) Co(OH)2 

measured by ESCA-3400 (Shimadzu Co. Ltd.) using Mg Kα as an X-ray source. Binding energy of 

spectra were calibrated by Au 4f peak, which was deposited on the samples prior to use. 
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Figure S3. (a) SEM image and characteristic X-ray mappings corresponding to (b) C, (c) N, and (d) Co 

of Co−14MR/KB cathode.  
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Figure S4. Time courses of the current density (circles) and Faradic efficiency for CO (diamonds) in the 

potentiostatic electrolysis of CO2 using Co−14MR/KB (red) and CoTPP/KB (black) as cathode catalysts. 

Cathode potential: −1.65 V (Ag/AgCl, pH = 14); CO2 supply to chamber 1: 10 mL min−1; electrolyte solution 

of chamber 2 and 3: 1.0 M KOH aq.; electrode area (cathode): 1.9 cm2. 
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Figure S5. TCD-GC/Q-MS profiles for the isotope labelling experiment for CO2 electrolysis using the 

Co−14MR cathode. (a) Chromatogram of TCD-GC. (b) and (c) MS profile of m/z = 2 (green), 28 

(blue), and 29 (red). (b) and (c) were the results of the electrolysis of standard CO2 and 13C-labeled 

CO2, respectively. The peak at 4 min in (a) and broad peaks starting at 4 min in m/z = 28 of (b) and 

m/z = 29 of (c) corresponded to CO. 
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Figure S6. Time courses of the cathode potential and Faradic efficiency of CO in the galvanostatic 

CO2 electrolysis at 100 mA cm−2 using Co−14MR (red) and CoPc (blue) as cathode catalysts.  
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Figure S7. (A) In-situ XANES spectra of Co−14MR/KB cathode (a) before the electrolysis, during the 

potentiostatic electrolysis under He atmosphere at (b) −0.6 V (Ag/AgCl), (c) −0.9 V (Ag/AgCl), (d) −1.25 

V (Ag/AgCl), (e) −1.65 V (Ag/AgCl), (f) under CO2 atmosphere at −1.25 V (Ag/AgCl), and (g) after the 

electrolysis. (B) Photographs of CoPc/KB cathode (a) before the electrolysis and (b) after the electrolysis. 
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Figure S8. The formation rate of CO (red) and H2 (blue) in the potentiostatic electrolysis at −1.65 V 

(Ag/AgCl) under a CO2 atmosphere (CO2 electrolysis condition) and an Ar atmosphere (H2O electrolysis 

condition), respectively. (a) Co−14MR/KB, (b) CoPc/KB, and (c) Co/KB cathodes. 
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Table S1. Summary of low concentration CO2 electrolysis using Co−14MR/KB, CoPc/KB, and Co/KB 

cathodes. Cathode potential: −1.65 V (Ag/AgCl, pH = 14); CO2/Ar supply to chamber 1: 10 mL min−1; 

electrolyte solution of chamber 2 and 3: 1.0 M KOH aq.; electrode area (cathode): 1.9 cm2. Id: current 

density, FECO: Faradic efficiency of CO. 

 

 
 

 


