Supplementary Material

Mechanistic exploration of syngas conversion at the interface of graphene/Cu(111): Identifying the effect of promoted electron transfer on the product selectivity

Zhongzeng Wei,^{a,#} Bing Bai,^{a,#} Hui Bai,^{a*} Yongliang Duan,^b Mingxue Yang,^a Haojie Cao,^a Zhijun Zuo,^a Jianping Zuo,^c Qiang Wang,^d Wei Huang^{a*}

 a. State Key Laboratory of Clean and Efficient Coal Utilization, college of chemical engineering and technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
b. National Energy Ningxia Coal Industry Group Coal Chemical Industry Technology Research Institute, Yinchuan 750411, Ningxia, China

c. School of Mechanics and Civil Engineering, China University of Mining and Technology, Beijing 100083, China

d. National Key Laboratory of High Efficiency and Low Carbon Utilization of Coal, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China

Corresponding authors:

Email: baihui@tyut.edu.cn; huangwei@tyut.edu.cn

[#] These authors contributed equally to this work.

The details of the thermodynamic corrections

The shomate gas equation[1] was used for the free energy correction of gaseous species:

$$G(T) = H(T) - TS(T)$$
(a)

$$H(T) = E_{\text{elec}} + E_{\text{ZPE}} + \int C_P dT$$
 (b)

$$E_{ZPE} = \frac{1}{2} \sum h_i \omega_i$$
 (c)

$$C_{P} = A + B \times t + C \times t^{2} + D \times t^{3} - \frac{E}{t^{2}}$$
(d)

$$S = A \times \ln(t) + B \times t + \frac{C \times t^{2}}{2} + \frac{D \times t^{3}}{3} - \frac{E}{2 \times t^{2}} + G$$
 (e)

where E_{elec} is the DFT energy, E_{ZPE} is the zero point energy, the parameter from A to G for different gas species can be obtained from the National Institute of Standards and Technology (NIST) website.

The harmonic approximation method was used to calculate the Gibbs free energy of adsorbates[2]:

$$G(T) = H(T) - TS(T)$$
(f)

$$H(T) = E_{elec} + E_{ZPE} + \sum \frac{\mathcal{E}_i}{e^{\varepsilon_i/k_B} - 1}$$
(g)

$$\varepsilon_i = h\omega_i$$
 (h)

where ε_i is harmonic energy, ω_i is angular frequency, k_B is Boltzmann constant, T is reaction temperature, and h is plank constant. The entropy of the surface intermediate was calculated by the following equation:

$$S(T) = k_B \sum_{i}^{harmDOF} \frac{\varepsilon_i}{k_B T(e^{\varepsilon_i/k_B} - 1)} - \ln(1 - e^{-\varepsilon_i/k_B} - 1)$$
(i)

Fig. S1 Top and side view of the most stable adsorption configurations of possible species involved in syngas conversion at the graphene/Cu(111) interface.

	Species	E _{ads} /eV	Configuration	d _{graphene/Cu} /Å	Key parameters/Å
1	Н	-3.68 (-2.43 ^{ref50} , -3.77 ^{ref51})	fcc <i>via</i> H	3.334	Cu - H: 1.728
2	СО	-0.03 (-0.86 ^{ref50} ,-1.09 ^{ref51})	hcp <i>via</i> C	4.802	Cu - C: 1.987
3	СНО	-1.24 (-1.18 ^{ref50} , -1.99 ^{ref51})	fcc <i>via</i> bridge-CO	4.381	Cu - C: 2.023; Cu-O: 2.045
4	СОН	-2.64 (-2.57 ^{ref50} , -3.77 ^{ref51})	hcp <i>via</i> C	4.886	Cu - C: 1.916
5		0.84	bridge OCCO	4.945	Cu - C(HO): 2.163; Cu - C(O): 2.067
	Occilo	-0.64	blidge-OCCO		Cu - O(HO):2.132; Cu - O(O):2.071
6	ОНССНО	-0.14	bridge-OCCO	4.858	Cu - C _l :: 2.269; Cu - C _{ll} : 2.118
_			U		Cu-O _I :2.029; Cu-O _{II} :2.121
7	OH ₂ CCHO	-1.56	hcp <i>via</i> O	5.758	Cu - O: 2.054
8	НОНССНО	-0.80	bridge-CCO	5.009	Cu - O: 2.170; Cu – C : 2.218
9	OH ₂ CCHOH	-0.93	bridge-OCCO	5.473	Cu - C: 2.019; Cu - O: 2.044
10	OH ₂ CCH ₂ OH	-1.90	hcp <i>via</i> O	6.085	Cu - O: 2.028
11	HOH ₂ CCH ₂ OH	0.57	no bond	6.607	/
12	CH ₂ O	0.39 (-0.06 ^{ref50} , -0.35 ^{ref51})	fcc <i>via</i> bridge-CO	4.395	Cu - C: 2.167; Cu - O: 2.113
13	СНОН	-1.27 (-1.85 ^{ref50} , -2.27 ^{ref51})	fcc <i>via</i> bridge-CO	4.434	Cu - C: 1.961; Cu - O: 2.091
14	CH ₃ O	-1.90 (-2.45 ^{ref50} , -3.04 ^{ref51})	fcc via O	5.644	Cu - O:2.010
15	CH₂OH	-1.07 (-0.84 ^{ref50} , -1.68 ^{ref51})	fcc <i>via</i> bridge-CO	4.613	Cu - C: 2.132; Cu - O: 2.140
16	CH₃OH	0.73 (-0.28 ^{ref50} , -0.32 ^{ref51})	top <i>via</i> O	5.925	Cu - O: 2.233
17	CH_3	-1.72 (-2.24 ^{ref52})	fcc <i>via</i> C	4.491	Cu - C: 2.163
18	CH_4	1.13 (-0.05 ^{ref52})	no bond	5.646	/
19	CH₃CO	-0.72 (-1.88 ^{ref52})	fcc <i>via</i> bridge-CO	5.704	Cu - C: 2.132; Cu - O: 2.168
20	CH₃CHO	0.82 (-0.16 ^{ref52})	no bond	6.004	/
21	CH_3CH_2O	-1.85	fcc via O	6.221	Cu - O: 2.018
22	CH₃CHOH	-0.49	top <i>via</i> C	6.106	Cu - C: 2.084
23	C_2H_5OH	0.93	no bond	6.559	/
24	CO ₂	1.40 (-0.08 ^{ref50})	bridge <i>via</i> C	4.869	Cu - C: 2.129
25	H ₂ O	0.42 (-0.21 ^{ref50} , -0.24 ^{ref51})	bridge <i>via</i> O	4.618	/

Table S1 Adsorption energy (eV) and key geometrical parameters (Å) of reactants, possible intermediates and products involved in syngas conversion at the graphene/Cu(111) interface.

	Reaction	v/cm ⁻¹	-
(R1)	$CO + H \rightarrow CHO$	697 <i>i</i>	
(R2)	$CO + H \rightarrow COH$	1590 <i>i</i>	
(R3)	$CHO + H(1) \rightarrow CH_2O$	1285 <i>i</i>	
(R4)	$CHO + H(2) \rightarrow CHOH$	1266 <i>i</i>	
(R5)	$CHO + H(1) \rightarrow CH_2 + O$	348 <i>i</i>	
(R6)	СНО + СНО → ОНССНО	45 <i>i</i>	
(R7)	CHO + CO → OCCHO	357 <i>i</i>	
(R8)	$CHO + CO \rightarrow CH + CO_2$	372 <i>i</i>	
(R9)	OHCCHO + H → OH ₂ CCHO	472 <i>i</i>	
(R10)	ОНССНО + Н → НОНССНО	1187 <i>i</i>	
(R11)	OHCCHO → OHCCH + O	207.7 <i>i</i>	
(R12)	$OH_2CCHO + H \rightarrow OH_2CCHOH$	1329 <i>i</i>	
(R13)	$OH_2CCHO + H \rightarrow OH_2CCH_2O$	78 <i>i</i>	
(R14)	$OH_2CCHOH + H \rightarrow OH_2CCH_2OH$	1223 <i>i</i>	
(R15)	$OH_2CCH_2OH + H \rightarrow HOH_2CCH_2OH$	1222 <i>i</i>	
(R16)	$OH_2CCH_2OH \rightarrow H_2CCH_2OH + O$	376.3 <i>i</i>	
(R17)	$CH_2O + H \rightarrow CH_3O$	390 <i>i</i>	
(R18)	$CH_2O + H(2) \rightarrow CH_2OH$	1196 <i>i</i>	
(R19)	$CH_2O + H(1) \rightarrow CH_3 + O$	837 <i>i</i>	
(R20)	$CH_2O \rightarrow CH_2 + O$	165 <i>i</i>	
(R21)	$CH_2O + H(2) \rightarrow CH_2 + OH$	1094 <i>i</i>	
(R22)	$CH_3O + H \rightarrow CH_3 + OH$	119 <i>i</i>	
(R23)	$CH_3O + H \rightarrow CH_3OH$	1159 <i>i</i>	
(R24)	$CH_3O \rightarrow CH_3 + O$	241 <i>i</i>	
(R25)	$CH_3 + H \rightarrow CH_4$	91 <i>i</i>	
(R26)	$CH_3 + CHO \rightarrow CH_3CHO$	442 <i>i</i>	
(R27)	$CH_3 \rightarrow CH_2 + H$	838i	
(R28)	$CH_3 + CO \rightarrow CH_3CO$	517 <i>i</i>	
(R29)	$CH_3 + CH_3 \rightarrow C_2H_6$	521 <i>i</i>	
(R30)	CH ₃ CHO + H → CH ₃ CHOH	1261 <i>i</i>	
(R31)	$CH_3CHO + H \rightarrow CH_3CH_2O$	1691 <i>i</i>	
(R32)	$CH_3CHOH + H \rightarrow C_2H_5OH$	350 <i>i</i>	
(R33)	$CH_3CH_2O + H \rightarrow C_2H_5OH$	1139 <i>i</i>	
(R34)	$CO + O \rightarrow CO_2$	369 <i>i</i>	
(R35)	$OH + H \rightarrow H_2O$	1345 <i>i</i>	

Table S2 Possible elementary reactions involved in syngas conversion at the interface of graphene/Cu(111) with the imaginary frequency of the transition state are tabulated.

	reaction	graphene/Cu(111) (this work)		Cu ₁ /graphene (Ref.15)		Cu(111) (Ref.50)		Cu(111) (Ref.51, Ref.52)		Cu(211) (ref.58)	
		Δ <i>E</i> /eV	E _a /eV	∆ <i>E</i> /eV	E _a /eV	∆ <i>E/</i> eV	<i>E</i> _a /eV	∆ <i>E</i> /eV	E _a /eV	Δ <i>E</i> /eV	E _a /eV
R1	со+н→сно	0.55	1.03	0.96	1.16	0.78	0.99	0.85	1.10	0.16	1.20
R2	со+н→сон	1.11	2.06	3.03	/	1.15	2.26	1.01	2.42	0.87	2.87
R3	СНО+Н→СНОН	0.33	0.89	-0.50	0.04	0.09	0.91	-0.04	0.92	0.35	1.43
R4	CHO+H→CH₂O	-0.20	0.37	-0.22	/	-0.40	0.47	-0.23	0.52	-0.50	0.93
R5	$CH_2O+H\rightarrow CH_2OH$	-0.03	1.00	-0.04	0.99	-0.06	0.82	0.04	0.93	0.28	1.37
R6	$CH_2O+H\rightarrow CH_3O$	-0.49	0.31	-0.66	1.12	-1.02	0.24	-0.91	0.36	-0.62	1.46
R7	CH₃O+H→CH₃OH	-0.01	1.38	/	/	-0.23	1.17	0.16	1.20	0.20	2.02
R8	СНО+СНО→ОНССНО	-1.15	0.13	-0.48	0.61	/	/	/	/	/	/
R9	СНО+СО→ОССНО	0.29	1.46	-0.56	0.69	/	/	/	/	/	/
R10	CH₃+CHO→CH₃CHO	-0.64	0.92	-1.15	0.51	/	/	-1.04 ^{ref.52}	0.51 ref.52	-0.94	0.91
R11	$CH_3+H\rightarrow CH_4$	-0.04	0.59	-0.78	0.54	/	/	-0.67 ref.52	0.80 ^{ref.52}	-0.23	1.34
R12	CH₃CHO+H→CH₃CHOH	0.22	0.93	0.18	1.35	/	/	/	/	-0.12	2.73
R13	$CH_3CHO+H\rightarrow CH_3CH_2O$	-0.66	2.45	-0.68	0.60	/	/	/	/	-0.83	1.39
R14	$CH_3CHOH+H\rightarrow CH_3CH_2OH$	-1.05	0.15	-0.58	1.98	/	/	/	/	/	/
R15	$CH_3CH_2O+H\rightarrow CH_3CH_2OH$	-0.17	1.22	0.06	1.60	/	/	/	/	0.23	1.93

Table S3 The comparison of activation barriers (E_a /eV) and reaction energies (ΔE /eV) of the key elementary reactions on the graphene/Cu(111), Cu(111), Cu(211) and Cu₁/graphene catalysts .

Fig. S2 The optimized configurations of (a) Cu(111) and (b) graphene/Cu(111), respectively. (Cu atom: pink, C atom : grey)

Table S4 Comparison of Bader charge distribution between Cu(111) and graphene/Cu(111) basedon the labelled atoms in Fig. S2.

Aotm	Bader charge				
AUIII	Cu(111)	graphene/Cu(111)			
Cu 2	-0.0102	-0.0190			
Cu 6	-0.0106	-0.0198			
Cu 10	-0.0109	-0.0208			
Cu 14	-0.0100	-0.0199			
Cu 18	-0.0101	-0.0194			
Cu 22	-0.0101	-0.0193			
Cu 26	-0.0099	-0.0199			
Cu 30	-0.0107	-0.0199			
Cu 34	-0.0105	-0.0195			
Cu 38	-0.0107	-0.0197			
Cu 42	-0.0106	-0.0203			
Cu 46	-0.0099	-0.0199			
Cu 50	-0.0105	-0.0192			
Cu 54	-0.0102	-0.0195			
Cu 58	-0.0105	-0.0194			
Cu 62	-0.0099	-0.0197			
C1	١	0.0699			
C2	١	-0.0779			
C3	١	0.0701			
C4	١	-0.0777			
C5	١	0.0697			
C6	١	-0.0779			
C7	١	0.0696			
C8	١	-0.0783			
C9	١	0.0698			
C10	١	-0.0779			
C11	١	0.0704			
C12	١	-0.0778			
C13	١	0.0704			
C14	١	-0.0774			
C15	١	0.0700			
C16	١	-0.0778			
C17	١	0.0700			
C18	١	-0.0784			
C19	١	0.0695			
C20	\	-0.0784			
C21	١	0.0701			
C22	\	-0.0784			

C23	\	0.0699
C24	١	-0.0781
C25	١	0.0695
C26	\	-0.0780
C27	\	0.0695
C28	١	-0.0781
C29	\	0.0695
C30	١	-0.0783
C31	\	0.0698
C32	١	-0.0784

References

[2] E.B. Wilson, J.C. Decius, P.C. Cross, Molecular Vibrations: The Theory of Infrared and Raman Vibrational Spectra, Dover Publications, 1980.

^[1] P. Atkins, J. De Paula, Atkins' Physical Chemistry, 2006.