Insight into the Alkaline Earth Metal Salts Promotion for Alkali-catalyzed Glucose Isomerization

Changqu Lin¹, Yunlin Shi¹, Lulu Xu¹, Zhengyue Wang¹, Lili Zhao², Hongli Wu^{1, *},

Fei Cao¹, Ping Wei¹

1, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech

University

30 South Puzhu Road, Nanjing, 211816 (P. R. China)

2, Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering,

Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816 (P. R. China)

*Corresponding author Email: <u>hlwu@njtech.edu.cn</u>

Figure S1 The MS of glucose reaction solution in Sr(OH) ₂ 2
Figure S2 First order kinetic fit for the conversion of fructose in Sr(OH)24
Figure S3 First order kinetic fit for the conversion of glucose in Sr(OH)24
Figure S4 First order kinetic fit for the conversion of fructose in CaCl ₂ -Sr(OH) ₂ 5
Figure S5 First order kinetic fit for the conversion of glucose in CaCl ₂ -Sr(OH) ₂ 6
Table S1 The optimized structures, energy differences (ΔG in hartree) for $C_6H_{12}O_6$, α -D-
Fructofuranose, β -D-Fructofuranose and β -D-Fructopyranose at the B3LYP/AUG-cc-pVDZ level.
Table S2 The isomers, energy differences (ΔG in hartree) for Ca ²⁺⁺ β -D-Fructofuranose at the
B3LYP/ BSI level7
Table S3 The isomers, energy differences (ΔG in hartree) for $Ca^{2+}+\alpha$ -D-Fructofuranose at the
B3LYP/ BSI level7
Table S4 The isomers, energy differences (ΔG in hartree) for $Ca^{2+}+\beta$ -D-Fructopyranose at the
B3LYP/BSI level7
Table S5 Reaction formula and reaction energy(kcal/mol)
Figure S6 The ratio of α - and β -glucose at 60°C for 5min in NaOH-CaCl ₂ solution
Figure S7 The ratio of α - and β -glucose at 60°C for 5min in LiOH-CaCl ₂ solution10
Figure S8 The ratio of β -glucose at room temperature with the time10
Figure 9 Effect of reaction temperature and reaction time on glucose isomerization in 50% CaCl ₂ -
0.2M NaOH11
Figure 10 Effect of reaction temperature and reaction time on glucose isomerization in 50% CaCl ₂ -
0.2M LiOH11

MS characterization

Electrospray ionization mass spectrometry (ESI-MS) was performed on an Orbitrap XL mass spectrometer (Thermo Fisher Scientific) with ESI ionization in the positive mode. The reaction solution was measured in the range of m/z 100-300 with the following operating parameters: capillary voltage 3.2 kV, sample cone voltage 40 V, source vaporizer temperature $150 \text{ }^{\circ}\text{C}$, cone gas (N₂) flow 20 L/h, injection volume 5μ L. A collision energy of 20 eV was used for the collision-induced dissociation MS/MS measurement stage. Data acquisition and analyses were performed using Xcalibur software.

Figure S1 The MS of glucose reaction solution in Sr(OH)₂

First-order rate reaction was assumed and the reaction rate could be expressed as follows:

$\ln\left([[\mathrm{Glu}]_t]/[\mathrm{Glu}]_0\right) = -kt$

where $[Glu]_t = glucose$ concentration at time t with unit of mol/L, $[Glu]_0 = initial glucose concentration, k = observed rate constant,$ and t stands for time in seconds. A linear correlation between $ln([[Glu]_t]/[Glu]_0)$ and reaction time t was plotted. The k obtained under different temperature was obtained. The results are shown in Figure S2-S5

Figure S2 First order kinetic fit for the conversion of fructose in Sr(OH)₂

Figure S3 First order kinetic fit for the conversion of glucose in $Sr(OH)_{2.}$

Figure S4 First order kinetic fit for the conversion of fructose in CaCl₂-Sr(OH)₂

Figure S5 First order kinetic fit for the conversion of glucose in $CaCl_2$ -Sr(OH)₂

	$C_6H_{12}O_6$	α-D- Fructofuranose	β-D- Fructofuranose	β-D- Fructopyranose
ΔG	-687.2045314	-687.2039814	-687.206687	-687.207196
C ₆ H ₁₂ C	ο ο ο ο ο ο ο ο ο ο ο ο ο ο	uctofuranose β-	D-Fructofuranose	β-D-Fructopyranose

Table S1 The optimized structures, energy differences (ΔG in hartree) for $C_6H_{12}O_6$, α -D-Fructofuranose, β -D-Fructofuranose and β -D-Fructopyranose at the B3LYP/AUG-cc-pVDZ level.

Table S2 The isomers, energy differences (ΔG in hartree) for Ca²⁺+ β -D-Fructofuranose at the B3LYP/ BSI level.

Table S3 The isomers, energy differences (ΔG in hartree) for Ca²⁺+ α -D-Fructofuranose at the B3LYP/ BSI level.

	i i	¥.	· *	×.	Y.
Ca ²⁺ +α-D- Fructofuranose	Iso-1	Iso-2	Iso-3	Iso-4	Iso-5
ΔG	-1364.748074	-1364.744576	-1364.745985	-1364.744735	-1364.747669

Table S4 The isomers, energy differences (ΔG in hartree) for Ca²⁺⁺ β -D-Fructopyranose at the B3LYP/BSI level.

		\$\$	***	A.	the.
Ca ²⁺ +β-D- Fructopyranose	Iso-1	Iso-2	Iso-3	Iso-4	Iso-5
ΔĜ	-1364.750756	-1364.750434	-1364.750433	-1364.749652	-1364.74802

 Table S5 Reaction formula and reaction energy(kcal/mol).

	$C_6H_{12}O_6 + CaCl_2$	$C_6H_{12}O_6CaCl_2$
ΔE	0	-12.0
ΔH	0	-12.0
ΔG	0	-0.3

Figure S6 The ratio of α - and β -glucopyranose at 60°C for 5min in NaOH-CaCl_2 solution

Figure S7 The ratio of α - and β -glucopyranose at 60°C for 5min in LiOH-CaCl₂ solution

Figure S8 The ratio of β -glucopyranose at room temperature with the

time

Figure S9 Effect of reaction temperature and reaction time on glucose isomerization in 0.5 g·mL⁻¹CaCl₂-0.008 g·mL⁻¹ NaOH.

Figure S10 Effect of reaction temperature and reaction time on glucose isomerization in 0.5 g·mL⁻¹CaCl₂-0.0048 g·mL⁻¹ LiOH.