In situ fabricating Rh/Ga₂O₃ photothermal catalyst for dry reforming of methane

Yuqiao Li ^a, Dezheng Li ^a, Huimin Liu ^{a*}, Yiming Lei ^{a,b*}, Rongda Zhao ^{c*}, Dehua He ^d Ze Zheng ^a, Hui Luo ^a, Aidi Liu ^a

^a, School of Chemical and Environmental Engineering, Liaoning University of Technology, Jinzhou 121001, China

^b, Department of Chemistry, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona 08193, Spain

^c, School of Materials Science and Engineering, Liaoning University of Technology, Jinzhou 121001, China

^d, Innovative Catalysis Program, Key Lab of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China

Catalysts	Surface area $(m^2 \cdot g^{-1})$	Average pore size (nm)
Ga ₂ O ₃	3.9	19.1
1% Rh ₂ O ₃ /Ga ₂ O ₃	4.6	21.4
ZnO	4.3	7.8
1% Rh ₂ O ₃ /ZnO	1.5	17.4

Table S1. Surface area and average pore size of Ga2O3, 1% Rh2O3/Ga2O3, ZnO, and 1%Rh2O3/ZnO.

	Pagation	Catalytic performance		Stability (h)	Source
Catalyst	conditions	(µmol g ⁻¹ min ⁻¹)			
		CO ₂	CH ₄		
Rh/Ga ₂ O ₃	Photothermal	112	76.3	4	This work
Pt-Au/SiO ₂	Photothermal	68.6	54.5	1	1
Ni@SiO ₂ -yolk	Photothermal	510	480	5	2
Cu _{19.8} Ru _{0.2}	Photothermal	n.m	4.6	20	3
NiO _x	Thermal	12.8	17.1	20	4
15Ni/Al ₂ O ₃	Photothermal	38.5	46.9	5	5
Rh-Au/SBA-15	Photothermal	60	53.3	8	6
Rh/Al ₂ O ₃	Thermal	n.m	0.6	0.8	7
Co-Ce/ZrO ₂	Thermal	1.7	1.5	6	8
Pd ₉₀ Au ₁₀ /Al ₂ O ₃	Photothermal	1210.6	930.3	0.5	9
10%Rh/STO	Photothermal	2.6	2.6	13	10

Table S2. The conversion rates of CO_2 and CH_4 were compared with other studies

Note: n.m means not mentioned

 Table S3. ICP-OES detects Rh content.

Catalyst	Rh loading (wt%)
Ga ₂ O ₃	-
Rh ₂ O ₃ /Ga ₂ O ₃	0.70
ZnO	-
Rh ₂ O ₃ /ZnO	0.86

Table S4. DRM catalytic performance of 1% Rh/Ga_2O_{3-x} and 1% Rh/ZnO_{1-x} under photothermal, thermal, and light conditions.

Catalysts	Reaction condition	Reactant	Conversion (µmol g ⁻¹ min ⁻¹)
1% Rh/Ga ₂ O _{3-x}	Dhatatharmal	CO_2	112
	Photothermal	CH_4	76.3
	Thermal	CO_2	71.9
		CH_4	60.4
	Light	CO_2	0
		CH_4	0
1% Rh/ZnO _{1-x}	Photothermal	CO_2	50.8
		CH_4	39.3
	Thermal	CO_2	49.9
		CH_4	39.3
	Light	CO_2	0
		CH_4	0

Photothermal reaction conditions: CH_4 : $CO_2 = 1$: 1, total flow rate: 10 mL min⁻¹, catalyst 0.094 g, reaction time 30 min, reaction temperature 500 °C, 300 W Xe lamp. Thermal reaction conditions: CH_4 : $CO_2 = 1$: 1, total flow rate: 10 mL min⁻¹, catalyst 0.094 g, reaction time 30 min, reaction temperature 500 °C.

Light reaction conditions: CH_4 : $CO_2 = 1 : 1$, total flow rate: 10 mL min⁻¹, catalyst 0.094 g, reaction time 30 min, 300 W Xe lamp.

Table S5. The contents of oxygen vacancy and lattice oxygen in 1% Rh_2O_3/Ga_2O_3 , 1% Rh/Ga_2O_{3-x} , 1% Rh_2O_3/ZnO , 1% Rh/ZnO_{1-x} and 1% Rh_2O_3/ZrO_2 , 1% Rh/ZrO_2 catalysts.

Catalysts	Oxygen vacancy	Lattice oxygen
1% Rh ₂ O ₃ /Ga ₂ O ₃	18.5%	81.5%
1% Rh/Ga ₂ O _{3-x}	25.3%	74.7%
1% Rh ₂ O ₃ /ZnO	13.1%	86.9%
1% Rh/ZnO _{1-x}	15.6%	84.4%
1% Rh ₂ O ₃ /ZrO ₂	29.3%	70.7%
1% Rh/ZrO ₂	30.5%	69.5%

Figure S1. (a) N_2 adsorption-desorption isotherms and (b) pore size distribution of Ga_2O_3 , 1% Rh_2O_3/Ga_2O_3 , ZnO, and 1% Rh_2O_3/ZnO .

Note 1: All samples have the same N_2 adsorption-desorption isotherms with the IV type isotherm in IUPAC classification and observed with a loop ring of type H₃.¹¹ For Rh₂O₃/ZnO catalysts, no saturation adsorption platforms appear, indicating irregular mesopore structures of the samples.¹² BET surface area was measured to be 3.9, 4.6, 4.3, and 1.5 m² g⁻¹ for Ga₂O₃, 1% Rh₂O₃/Ga₂O₃, ZnO, and 1% Rh₂O₃/ZnO, respectively.

Figure S2. (a) UV-vis spectra and (b) band gap of Ga_2O_3 , ZnO, 1% Rh_2O_3/Ga_2O_3 , and 1% Rh_2O_3/ZnO .

Note 2: The band edges of pristine ZnO and β -Ga₂O₃ were 290 and 400 nm, corresponding to 3.23 and 4.59 eV bandgap, respectively (Fig. S2b). But Rh₂O₃ NPs enhanced the light absorption ability of 1% Rh₂O₃/Ga₂O₃ and 1% Rh₂O₃/ZnO, especially in the visible light range (400–800 nm) without obviously changing their band gaps.

Figure S3. H₂ and CO yield on DRM reaction: (a) 1% Rh/Ga₂O_{3-x} and (b) 1% Rh/ZnO₁.

_x. Reaction conditions: 500 °C, CH_4 : $CO_2 = 1 : 1$, total flow rate: 10 mL min⁻¹, 0.094 g of catalyst, with or without visible light irradiation (300 W Xe lamp).

Figure S4. DRM catalytic performances over 1% Rh/Ga₂O_{3-x} and 0.5% Rh/Ga₂O_{3-x} : (a) CH₄ conversion and (b) CO₂ conversion. Reaction conditions: 500 °C, CH₄ : CO₂ = 1 : 1, total flow rate: 10 mL min⁻¹, 0.094 g of catalyst, with or without visible light irradiation (300 W Xe lamp).

Figure S5. DRM catalytic performances over 1% Rh/Ga $_2O_{3-x}$ and 1.5% Rh/Ga $_2O_{3-x}$:

(a) CH_4 conversion and (b) CO_2 conversion. Reaction conditions: 500 °C, CH_4 : $CO_2 = 1 : 1$, total flow rate: 10 mL min⁻¹, 0.094 g of catalyst, with or without visible light irradiation (300 W Xe lamp).

Figure S6. DRM catalytic performances over 1% Ru/Ga₂O_{3-x}: CH₄ and CO₂ conversion. Reaction conditions: 500 °C, CH₄ : CO₂ = 1 : 1, total flow rate: 10 mL min⁻¹, 0.094 g of catalyst, with or without visible light irradiation (300 W Xe lamp).

Figure S7. DRM catalytic performances over 1% Pd/Ga₂O_{3-x}. Reaction conditions: 500

°C, $CH_4 : CO_2 = 1 : 1$, total flow rate: 10 mL min⁻¹, 0.094 g of catalyst, with or without visible light irradiation (300 W Xe lamp).

Figure S8. Fixed-bed reactor under atmospheric pressure.

Figure S9. (a) TEM and (b) HR-TEM images of 1% Rh₂O₃/ZnO. (c) TEM and (d) HR-

TEM images of 1% Rh₂O₃/Ga₂O₃.

Note 3: The morphology and crystallinity of 1% Rh₂O₃/Ga₂O₃ and 1% Rh₂O₃/ZnO samples were observed by transmission electron microscope (TEM). 1% Rh₂O₃/ZnO catalyst had a rod-like structure, and the Rh₂O₃ nanoparticles (NPs) were uniformly distributed on the ZnO surface (**Figure S9a**). The distances of clear lattice fringes were 0.27 and 0.25 nm shown on the high-resolution TEM (HRTEM) image, corresponding to Rh₂O₃ and ZnO with the good crystal structure (**Figure S9b**).¹³ Similarly, it could be observed that Rh₂O₃ NPs were loaded on β -Ga₂O₃ support (d = 0.28), meaning the successful preparation of 1% Rh₂O₃/Ga₂O₃ nanocomposite (**Figure S9c** and **d**).^{14, 15}

Figure S10. (a) XPS spectra of 1% Rh₂O₃/Ga₂O₃. (b) Ga 2p, (c) Rh 3d and (d) Ga 3d.

Note 4: Figure S10a revealed the coexistence of C, Ga, O, Rh, and N elements in 1%

Rh₂O₃/Ga₂O₃. The high-resolution XPS (HR-XPS) spectra of Ga 2p showed two peaks from Ga 2p_{3/2} and Ga 2p_{1/2} at 1118.53 eV and 1145.42 eV, respectively (**Figure S10b**).¹⁶ Compared to the β-Ga₂O₃, the characteristic peaks of Ga 2p and 3d shifted slightly to lower binding energies due to the presence of Rh₂O₃.¹⁷ Rh 3d spectra in 1% Rh₂O₃/Ga₂O₃ samples contained two peaks at 309.58 eV and 314.42 eV that can be assigned to Rh 3d_{5/2} and Rh 3d_{3/2} (**Figure S10c**).^{18–19} And a peak of Ga 3d at 19.86 eV, which was attributed to Ga³⁺, was observed in 1% Rh₂O₃/Ga₂O₃, representing the Ga– O bonding (**Figure S10d**).¹⁶

Figure S11. DRM catalytic performances over 1% Rh/ZrO₂: (a) CH₄ and CO₂ conversion and (b) H₂ and CO yield. Reaction conditions: 500 °C, CH₄ : CO₂ = 1 : 1, total flow rate: 10 mL min⁻¹, 0.094 g of catalyst, with or without visible light irradiation (300 W Xe lamp).

Figure S12. O1s XPS spectra of 1% Rh₂O₃/ZrO₂ and 1% Rh/ZrO₂.

Note 5: To further elucidate the role of oxygen vacancies, ZrO_2 with good stability and excellent catalytic performance was selected as the substrate to produce 1% Rh/ZrO₂ sample via the same preparation method. The DRM reactions were carried out over 1%

Rh/ZrO₂ under the same reaction conditions. The results showed that the photothermal catalytic performance of the 1% Rh/ZrO₂ catalyst was similar to thermal catalytic activity (**Figure S11**). The surface chemical properties of the catalyst were characterized by XPS (**Figure S12**), and the oxygen vacancy content of the catalyst before and after the reaction was calculated (**Table S5**). Before and after the DRM reaction, the content of oxygen vacancy in 1% Rh/ZrO₂ had only a slight variation. This indicated the enhancement effect of oxygen vacancies in the Rh/Ga₂O_{3-x} system.

Figure S13. (a and b) PL and (c and d) EIS spectra of Ga₂O₃, 1% Rh/Ga₂O_{3-x}, ZnO and

1% Rh/ZnO_{1-x}.

Figure S14. XRD of the fresh 1% Rh_2O_3/Ga_2O_3 , 1% Rh_2O_3/ZnO the spent 1% Rh/Ga_2O_{3-x} and 1% Rh/ZnO_{1-x} .

Figure S15. TG of the spent 1% Rh/Ga $_2O_{3-x}$ and 1% Rh/ZnO $_{1-x}$ catalysts.

Reference

- H. Song, X. G. Meng, T. D. Dao, W. Zhou, H. M. Liu, L. Shi, H. B. Zhang, T. Nagao, T. Kako and J. H. Ye, ACS Appl. Mater. Interfaces, 2018, 10, 408–416.
- 2 H. M. Liu, X. G. Meng, T. D. Dao, L. Q. Liu, P. Li, G. X. Zhao, T. Nagao, L. Q. Yang and J. H. Ye, J. Mater. Chem. A, 2017, 5, 10567–10573.
- L. A. Zhou, J. M. P. Martirez, J. Finzel, C. Zhang, D. F. Swearer, S. Tian, H. Robatjazi, M. H. Lou, L. L. Dong, L. Henderson, P. Christopher, E. A. Carter, P. Nordlander and N. J. Halas, Nat. Energy, 2020, 5, 61–70.
- L. Sandoval-Diaz, D. Cruz, M. Vuijk, G. Ducci, M. Hävecker, W. L. Jiang, M. Plodinec, A. Hammud, D. Ivanov, T.
 Götsch, K. Reuter, R. Schlögl, C. Scheurer, A. Knop-Gericke and T. Lunkenbein, Nat. Catal., 2024, DOI: 10.1038/s41929-023-01090-4.
- 5 H. M. Liu, T. D. Dao, L. Q. Liu, X. G. Meng, T. Nagaoa and J. H. Ye, Appl. Catal. B Environ., 2017, 209, 183–189.
- H. M. Liu, X. G. Meng, T. D. Dao, H. B. Zhang, P. Li, K. Chang, T. Wang, M. Li, T. Nagao and J. H. Ye, Angew. Chem.
 Int. Ed., 2015, 54, 11545–11549.
- 7 P. Ferreira-Aparicio, A. Guerrero-Ruiz and I. Rodriguez-Ramos, Appl. Catal. A Gen., 1998, 170, 177–187.
- A. I. Paksoy, B. S. Caglayan and A. E. Aksoylu, Appl. Catal. B Environ., 2015, 168, 164–174.
- H. M. Liu, M. Li, T. D. Dao, Y. Y. Liu, W. Zhou, L. Q. Liu, X. G. Meng, T. Nagao and J. H. Ye, Nano Energy, 2016, 26, 398–404.
- S. Shoji, X. B. Peng, A. Yamaguchi, R. Watanabe, C. Fukuhara, Y. Cho, T. Yamamoto, S. Matsumura, M. W. Yu,
 S. Ishii, T. Fujita, H. Abe and M. Miyauchi, Nat. Catal., 2020, 3, 148–153.
- 11 S. A. R. Ahmadi, M. R. Kalaee, O. Moradi, F. Nosratinia and M. Abdouss, J. Mol. Struct., 2022, 1251, 132013.
- 12 Y. Wang, J. Zhao, T. F. Wang, Y. X. Li, X. Y. Li, J. Yin and C. Y. Wang, J. Catal., 2016, 337, 293–302.
- G. Lin, Z. Zhang, Q. Ju, T. Wu, C. U. Segre, W. Chen, H. Peng, H. Zhang, Q. Liu, Z. Liu, Y. Zhang, S. Kong, Y. Mao,
 W. Zhao, K. Suenaga, F. Huang and J. Wang, Nat. commun., 2023, 14, 280.
- 14 M. L. Guo, W. Q. Jiang, J. C. Ding and J. Lu, Fuel, 2022, 315, 123254.
- 15 A. Staerz, T. H. Kim, J. H. Lee, U. Weimar and N. Barsan, J. Phys. Chem. C, 2017, 121, 24701–24706.
- 16 J. P. Wei, J. Yang, Z. H. Wen, J. Dai, Y. Li and B. H. Yao, Rsc Advances, 2017, 7, 37508–37521.
- 17 N. Ojha, A. K. Metya and S. Kumar, Appl. Surf. Sci., 2022, 580, 152315.
- 18 P. K. L. Tran, D. T. Tran, D. Malhotra, S. Prabhakaran, D. Kim, N. H. Kim and J. H. Lee, Small, 2021, 17, 2103826.
- 19 M. Kurnatowska, M. E. Schuster, W. Mista and L. Kepinski, Chemcatchem, 2014, 6, 3125–3131.