Electronic Supplementary Information

Co, Fe decorated N, S co-doping porous carbon enables high stability for oxygen reduction reaction

Qiulan Huang ^a, Ruiqin Ren ^a, Jia Li ^a, Muhammad Waqas ^b, Pan Chen ^a, Xiaotian Liu ^a, Dujuan Huang ^a, Zhongyun Yang ^a, Xinglan Peng ^a, Du-Hong Chen * ^a, Youjun Fan * ^a, and Wei Chen * ^a

 ^a Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
 ^b Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
 E-mail addresses: dhchen@gxnu.edu.cn (D.-H. Chen), youjunfan@mailbox.gxnu.edu.cn (Y.-J. Fan), weichen@mailbox.gxnu.edu.cn (W. Chen).

Calculation of the number of transferred electrons using the K-L equation:

The dynamics of ORR on the prepared catalysts were studied in more detail by K-L equation:

$$\frac{1}{j} = \frac{1}{j_k} + \frac{1}{j_l} = \frac{1}{j_k} + \frac{1}{B\omega^{\frac{1}{2}}} (B = 0.2nFC_0 D_0^{\frac{2}{3}} V^{-\frac{1}{6}})$$

where *j* is the measured current density, j_k and j_l are the kinetic and limiting current densities, is the angular velocity of the disk, *n* is the electron transfer number, *F* is the Faraday constant (96485 C mol⁻¹), C_0 is the bulk concentration of O_2 (1.6×10⁻⁶ mol L⁻¹), D_0 is the diffusion coefficient of O_2 in 0.1 M KOH, and *V* is the kinematic viscosity of the electrolyte (0.01 cm² s⁻¹). By adjusting the rotational speed of LSV, a good linear relationship between *j*⁻¹ and $\omega^{-1/2}$ was observed at 0.3, 0.4, 0.5, and 0.6 V for the samples as shown in Fig. 3d. The electron transfer number *n* can be obtained by substituting the slope into the abovementioned equation. Here, the value of *n* is 3.99 for FeCo-SNC.

Fig. S1 TEM images of Co-NC (a, c), FeCo-NC (b, d).

Fig. S2 SEM images of (a) ZIF-67 (inset is a magnified ZIF-67), (b) FePc/ZIF-67, (c) FeTsPc/ZIF-67, (d) Co-NC, (e) FeCo-NC, (f) FeCo-SNC.

Fig. S3 XRD patterns of the prepared ZIF-67, FePc/ZIF-67 and FeTsPc/ZIF-67 catalysts, respectively.

Fig. S4 Full-survey spectra of ZIF-67, FePc/ZIF-67, FeTsPc/ZIF-67, Co-NC,

FeCo-NC and FeCo-SNC, respectively.

Fig. S5 LSV curves of FeCo-SNC obtained under different mass ratio of FeTsPc to ZIF-67 in an O_2 -saturated 0.1 M KOH electrolyte at a rotation rate of 1600 rpm with a scan rate of 10 mV s⁻¹.

Catalysts	E _{1/2} (V)	References
FeCo-SNC	0.856	This work
Co ₂ P/Co-N-C	0.82	1
FeCo/NSC	0.82	2
Fe porphyrin/CNT	0.84	3
O-Co-N/C	0.85	4
meso-Fe-N-C	0.85	5
MPF/M = Fe, Co	0.813	6
Fe-ND/C	0.79	7
Fe SA-NSC-900	0.86	8
Fe-N-C/PC	0.85	9
FeCo-NCNFs-800	0.85	10

Table S1 The comparison of ORR activity on the reported catalysts.

References

- 1 Q. P. Xu, Xiaomin Zhu, Zhaogen Luo, Kaifen Liu, Yiyi Yuan, Dingsheng, *Int J Hydrogen Energy*, 2022, **47**, 16518-16527.
- 2 S. Chang, H. Zhang, Z. Zhang, J. Energy Chem., 2021, 56, 64-71.
- 3 L. Xie, X.-P. Zhang, B. Zhao, P. Li, J. Qi, X. Guo, B. Wang, H. Lei, W. Zhang, U.-P. Apfel, R Cao, *Angew. Chem. Int. Edit.*, 2021, **60**, 7576-7581.
- 4 C.-H. X. W. Zhang, H. Zheng, R. Li, K. Zhou, Adv. Funct. Mater., 2022, 32, 2200763.
- 5 Y. Y. Zhou, Y. Ma, D. Foucher, A. C. Xiong, L. Zhang, J. Stach, E. A. Yue, Q. Kang, Y. jin, ACS Catal., 2020, **11**, 74-81.
- 6 S. M. Akula, M. Kozlova, J. Käärik, M. Treshchalov, A. Kikas, A. Kisand, V. Aruväli, J. Paiste, P. Tamm, A. Leis, J. Tammeveski, Kaido, *Chem. Eng. J.*, 2023, **458**, 141468.
- 7 P. Su, W. Huang, J. Zhang, U. Guharoy, Q. Du, Q. Sun, Q. Jiang, Y. Cheng, J. Yang, X. Zhang, Y. Liu, S. P. Jiang, J. Liu, *Nano Res.*, 2020, **14**, 1069-1077.
- 8 M. Wang, W. Yang, X. Li, Y. Xu, L. Zheng, C. Su, B. Liu, *ACS Energy Lett.*, 2021, **6**, 379-386.
- 9 J. Guo, Y. Li, Y. Cheng, L. Dai, Z. Xiang, ACS Nano 2017, 11, 8379-8386.
- 10 L. Yang, S. Feng, G. Xu, B. Wei, L. Zhang, ACS Sustainable Chem. Eng., 2019, **7**, 5462-5475.