Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2023

Supplementary Information for Catalysis Science & Technology

Supplementary Information

Theoretical Study of Catalytic Activity Modifications in CO₂ Methanation Induced by an Electric Field in Solid-Oxide Cells

Katsuhiro Wakamatsu, *a,b Takaaki Yasuda, a Masato Aratani b and Teppei Ogura *a,b

 ^a Department of Nanotechnology for Sustainable Energy, Graduate School of Science and Technology, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo, 669-1330, Japan
^b Department of Physics, Graduate School of Science and Technology, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo, 669-1330, Japan

* Corresponding author e-mail addresses: (K.W.) katsu29yukke@gmail.com, (T.O.) t-ogura@kwansei.ac.jp

The electric dipole moment and polarizability values of surface adsorbed species with an electric field

Adsorption energy dependence on external electric fields is described as following Eq. S1, and the electric dipole moment and the effective polarizability values of adsorbed species on catalytic surfaces can be obtained by this equation^{1,2}.

$$E_{ads, with EF} = E_{ads, without EF} - d \cdot F - \frac{\alpha}{2}F^2 [S1]$$

where $E_{ads, with EF}$ is the adsorption energy with external electric fields, $E_{ads, without EF}$ is the adsorption energy without external electric fields, d is an electric dipole moment, α is effective polarizability and F is an external electric field. Eq. S1 is based on Eqs. 17 and 18, meaning that the effect of *d* is larger than that of *p* when the magnitude of electric fields is small ($F \le 1 \text{ V/Å}, F^2$ works for d). Still, the effect of p becomes the same degree as that of d when the magnitude of electric fields is large ($F \ge 1 \text{ V/Å}$). The electric dipole moment and the effective polarizability values for adsorbed species on Ni (111) surface in this study and the early study reported by F. Che et al.¹ obtained by the equation mentioned above are shown in Table S1. The comparisons of the adsorption energy plots of H atom, C atom, CH and CH₃ with external electric fields between our calculation and the early report by F. Che et al. are shown in Fig. S1. Comparing these calculation results with their results, our results have a few differences. In the electric dipole moment values, positive and negative sign tendencies agree, although the magnitude of each adsorbed species is a little larger in our results. In the calculation reported by F. Che et al., 4 Ni metal layers with 11 Å vacuum layer is used as a slab model and the Perdew-Wang 91 (PW91) functional³ is used as an exchange-correlation functional unlike our calculation. This may be why the magnitude of the electric dipole moment values is slightly different. In the effective polarizability values, the magnitude of each adsorbed species is also a little different from their reports and positive and negative sign tendencies (except for the H atom) do not agree with their reports. A little magnitude difference of the effective polarizability values is probably caused by the difference of calculation conditions as well as the case of electric dipole moment values. In addition, as the reason why our results have a few differences in the electric dipole moment and effective polarizability values (*d* and α), the difference in electric field impression regions is considered. In the previous report, they used a wider external electric field range from -1.0 to 1.0 V/Å than ours from -0.5 to 0.5 V/Å, so we estimated the effective polarizability values (α) where the effort of the electric dipole moment induced by atomic polarization (p) is small.

Spacios on slab	In this	study	In the early study		
species on slab	$d [eVÅV^{-1}]$	$\alpha [\text{\AA}^2 \text{V}^{-1}]$	$d [eVÅV^{-1}]$	$\alpha [\text{\AA}^2 \text{V}^{-1}]$	
Н	-0.034	-0.044	-0.010	-0.062	
О	-0.155	-0.031	—	—	
СН	0.139	0.191	0.076	-0.193	
CO	-0.380	0.438	_	_	
CH ₃	0.390	0.348	0.191	-0.148	
CO_2	-0.137	0.683	_	_	
СНО	0.081	0.432	_	_	
С	-0.127	0.058	-0.066	-0.18	
ОН	0.516	0.188	_	_	
S	-0.025	0.310	—	—	

Table S1. Electric dipole moment and the effective polarizability values for adsorbed species on the Ni (111) surface in this study and the early study¹.

Fig. S1. Adsorption energy plots of H atom, C atom, CH and CH₃ with external electric fields in this study (circle markers) and the early study (triangle markers)¹.

Number	Reaction	A	E _a [J/mol]	⊿ <i>H</i> [J/mol]	⊿ S [J/mol • K]
1	$H_2 + 2 (111)^* = 2 H(111)^*$	3.941×10 ⁸	23060	-41774	-82.717
2	$H_2O + (111)^* = H_2O(111)^*$	1.031	0	-18000	-85.1
3	$CO + (111)^* = CO(111)^*$	0.827	0	-34664	-51.237
4	$CH_4 + 2 (111)^* = CH_3(111)^* + H(111)^*$	2.673×10 ⁸	129000	28611	-109.84
5	$CH_2O + (111)^* = CH_2O(111)^*$	0.798	0	-51000	-156.57
6	$CH_{3}OH + (111)^{*} = CH_{3}OH(111)^{*}$	0.773	0	-48000	-101.94
7	$CO_2 + (111)^* = CO_2(111)^*$	0.66	0	-32000	-90.72
8	$CH_3(111)^* + (111)^* = CH_2(111)^* + H(111)^*$	5.354×10 ¹³	66660	3000	-0.79
9	$CH_2(111)^* + (111)^* = CH(111)^* + H(111)^*$	9.484×10 ¹²	26030	-38000	-14.02
10	$CH(111)^* + (111)^* = C(111)^* + H(111)^*$	2.321×10^{14}	135740	54000	-2.33
11	$H_2O(111)^* + (111)^* = H(111)^* + OH(111)^*$	2.301×10 ¹¹	91100	-9000	-55.54
12	$OH(111)^* + (111)^* = H(111)^* + O(111)^*$	1.002×10^{13}	82810	-33000	-17.61
13	$C(111)^* + O(111)^* = CO(111)^* + (111)^*$	1.072×10^{15}	206130	-144000	32.73
14	$C(111)^* + OH(111)^* = COH(111)^* + (111)^*$	3.025×10 ¹³	125710	-83000	15.11
15	$CH(111)^* + O(111)^* = CHO(111)^* + (111)^*$	3.132×10 ¹²	118277	25000	17.38
16	$CH(111)^* + OH(111)^* = CHOH(111)^* + (111)^*$	1.081×1013	123000	48000	8.49
17	$CHO(111)^* + (111)^* = H(111)^* + CO(111)^*$	9.561×1012	20140	24829	143.33
18	$COH(111)^* + (111)^* = H(111)^* + CO(111)^*$	4.309×1012	86220	-94000	0
19	$CHOH(111)^* + (111)^* = H(111)^* + CHO(111)^*$	7.98×1012	59623	-57000	-8.72
20	$CHOH(111)^* + (111)^* = H(111)^* + COH(111)^*$	4.942×1012	8760	-77000	4.29
21	$CH_2(111)^* + O(111)^* = CH_2O(111)^* + (111)^*$	7.146×1012	130470	28000	-4.18
22	$CH_2O(111)^* + (111)^* = H(111)^* + CHO(111)^*$	5.086×1013	31000	-42000	7.54
23	$CH_2O(111)^* = CHOH(111)^*$	1.0×1013	174540	15000	16.26
24	$CH_2(111)^* + OH(111)^* = CH_2OH(111)^* + (111)^*$	3.297×1012	84770	17000	3.07
25	$CH_2OH(111)^* + (111)^* = H(111)^* + CHOH(111)^*$	7.077×1012	35700	-6000	-8.6
26	$CH_2OH(111)^* + (111)^* = H(111)^* + CH_2O(111)^*$	5.113×1012	59410	-22000	-24.87
27	$CH_2OH(111)^* = CH_3O(111)^*$	1.0×1013	188530	-38000	-11.32
28	$H(111)^* + CH_2OH(111)^* = CH_3OH(111)^* + (111)^*$	1.0×1013	142800	-26000	38.16
29	$CH_3(111)^* + O(111)^* = CH_3O(111)^* + (111)^*$	3.256×1013	151480	15000	8.57
30	$CH_{3}O(111)^{*} + (111)^{*} = H(111)^{*} + CH_{2}O(111)^{*}$	1.0×1013	60780	17000	-13.54
31	$CH_3(111)^* + OH(111)^* = CH_3OH(111)^* + (111)^*$	1.0×1013	124660	-6000	40.45
32	$CH_3OH(111)^* + (111)^* = H(111)^* + CH_3O(111)^*$	1.0×1013	60780	-13000	-49.49
33	$OH(111)^* + CO(111)^* = COOH(111)^* + (111)^*$	1.0×1013	101000	63000	-37.33
34	$COOH(111)^* + (111)^* = H(111)^* + CO_2(111)^*$	1.0×1013	97000	-73000	63.1
35	$O(111)^* + CO(111)^* = CO_2(111)^* + (111)^*$	1.0×1013	149000	23000	43.37
36	$2 \operatorname{CO}(111)^* = \operatorname{C}(111)^* + \operatorname{CO}_2(111)^*$	1.0×1013	318000	167000	10.65
37	$C(111)^* = (111)^* + Carbon(111)^*$	17000	80000	0	0
38	$H_2 + 2(211)^* = 2 H(211)^*$	3 941×108	11000	-46774	-82 717
39	$H_2 O + (211)^* = H_2 O(211)^*$	1 031	0	-12000	-85 1
40	$CO + (211)^* = CO(211)^*$	0.827	0	-44664	-51 237
41	$CH_4 + 2(211)^* = H(211)^* + CH_2(211)^*$	7.03×109	116350.8	-34000	-124 39
42	$CO_2 + (211)^* = CO_2(211)^*$	0.66	0	-26000	-90.72
43	$(211)^* + CH_2(211)^* = H(211)^* + CH_2(211)^*$	5 354×1013	59000	26000	-0.79
45	$(211)^* + CH_2(211)^* = H(211)^* + CH_2(211)^*$	9.484×1012	46000	-45000	-14.02
45	$(211)^* + CH(211)^* = H(211)^* + C(211)^*$	2 321×1014	88000	-17000	-2.33
ч5 46	$(211)^{*} + \text{Cr}(211)^{*} = \text{H}(211)^{*} + \text{Cr}(211)^{*}$	2.321×1014	38000	-51000	-55 54
40	$(211)^{+} H_2O(211)^{-} H(211)^{+} OH(211)^{*}$ $(211)^{*} + OH(211)^{*} = H(211)^{*} + O(211)^{*}$	1.002×1013	76000	-16000	-17.61
-+/ /18	$C(211)^* + O(211)^* = (211)^* + O(211)^*$	1.002^1013	16000	-10000	22 72
+0 /0	$C(211)^* + OH(211)^* = (211)^* + COH(211)^*$	8 22×1012	147000	-40000	15 11
+7 50	$CH(211)^* + O(211)^* = (211)^* + CHO(211)^*$	0.55×1012	172762 1	58000	17.29
50	$CII(211) + CIO(211)^* - (211)^* + CIO(211)^*$ (211)* + CIO(211)* - U(211)* + CO(211)*	4.1^1013	20000	22440	17.30
51	$(211)^{*} + CHO(211)^{*} = H(211)^{*} + CO(211)^{*}$	9.301×1012	20000	52440	157.88

Table S2. Elementary steps in CO_2 methanation. (Reaction 1-51)

Number	Reaction	A	E _a [J/mol]	⊿ H [J/mol]	⊿ S [J/mol • K]
52	$(211)^* + COH(211)^* = H(211)^* + CO(211)^*$	7.3×1012	43000	-127000	0
53	$CO(211)^* + OH(211)^* = (211)^* + COOH(211)^*$	1.0×1013	111000	106500	-37.33
54	$(211)^* + COOH(211)^* = H(211)^* + CO_2(211)^*$	1.0×1013	97000	-69500	63.1
55	$CO(211)^* + O(211)^* = (211)^* + CO_2(211)^*$	1.35×1014	145880.4	53000	43.37
56	$2 \operatorname{CO}(211)^* = \operatorname{CO}_2(211)^* + \operatorname{C}(211)^*$	1.0×1013	326000	101000	10.65
57	$C(211)^* = (211)^* + Carbon(211)^*$	17000	80000	0	0
58	$CH_3(111)^* + (211)^* = (111)^* + CH_3(211)^*$	1.0×1013	25000	-60111	-14.55
59	$CH_2(111)^* + (211)^* = (111)^* + CH_2(211)^*$	1.0×1013	25000	-34611	-14.55
60	$CH(111)^* + (211)^* = (111)^* + CH(211)^*$	1.0×1013	46000	-39111	-14.55
61	$C(111)^* + (211)^* = (111)^* + C(211)^*$	1.0×1013	50000	-107611	-14.55
62	$H(111)^* + (211)^* = (111)^* + H(211)^*$	1.0×1013	13000	-2500	0
63	$H_2O(111)^* + (211)^* = (111)^* + H_2O(211)^*$	1.0×1013	300	6000	0
64	$OH(111)^* + (211)^* = (111)^* + OH(211)^*$	1.0×1013	25000	-33500	0
65	$O(111)^* + (211)^* = (111)^* + O(211)^*$	1.0×1013	48000	-14000	0
66	$CO(111)^* + (211)^* = (111)^* + CO(211)^*$	1.0×1013	10000	-10000	0
67	$CHO(111)^* + (211)^* = (111)^* + CHO(211)^*$	1.0×1013	13000	-20111	-14.55
68	$COH(111)^* + (211)^* = (111)^* + COH(211)^*$	1.0×1013	25000	20500	0
69	$CO_2(111)^* + (211)^* = (111)^* + CO_2(211)^*$	1.0×1013	0	6000	0
70	$H_2 + 2 (100)^* = 2 H(100)^*$	3.507×108	11000	-43774	-82.717
71	$H_2O + (100)^* = H_2O(100)^*$	1.031	0	-12000	-85.1
72	$CO + (100)^* = CO(100)^*$	0.827	0	-35664	-51.237
73	$CH_4 + 2 (100)^* = H(100)^* + CH_3(100)^*$	2.495×108	117000	156440	20.48
74	$CO_2 + (100)^* = CO_2(100)^*$	0.66	0	-26000	-90.72
75	$(100)^* + CH_3(100)^* = H(100)^* + CH_2(100)^*$	5.354×1013	59000	-15000	-0.79
76	$(100)^* + CH_2(100)^* = H(100)^* + CH(100)^*$	9.484×1012	46000	-70000	-14.02
77	$(100)^* + CH(100)^* = H(100)^* + C(100)^*$	2.321×1014	88000	-22000	-2.33
78	$(100)^* + H_2O(100)^* = H(100)^* + OH(100)^*$	2.301×1011	38000	-47000	-55.54
79	$(100)^* + OH(100)^* = H(100)^* + O(100)^*$	1.002×1013	114000	-30000	-17.61
80	$C(100)^* + O(100)^* = (100)^* + CO(100)^*$	1.110×1013	202000	16000	32.73
81	$C(100)^* + OH(100)^* = (100)^* + COH(100)^*$	1.018×1013	154000	63000	15.11
82	$CH(100)^* + O(100)^* = (100)^* + CHO(100)^*$	1.214×1013	195000	72000	17.38
83	$(100)^* + CHO(100)^* = H(100)^* + CO(100)^*$	9.561×1012	20000	-10374	76.04
84	$(100)^* + COH(100)^* = H(100)^* + CO(100)^*$	2.513×1013	93000	-77000	0
85	$CO(100)^* + OH(100)^* = (100)^* + COOH(100)^*$	1.0×1013	111000	95000	-37.33
86	$(100)^* + COOH(100)^* = H(100)^* + CO_2(100)^*$	1.0×1013	97000	-68000	63.1
87	$CO(100)^* + O(100)^* = (100)^* + CO_2(100)^*$	1.0×1013	149000	57000	43.37
88	$2 \operatorname{CO}(100)^* = \operatorname{CO}_2(100)^* + \operatorname{C}(100)^*$	1.0×1013	326000	41000	10.65
89	$C(100)^* = (100)^* + Carbon(100)^*$	1.0×1013	80000	0	0
90	$CH_3(211)^* + (100)^* = (211)^* + CH_3(100)^*$	1.0×1013	25000	188940	144.87
91	$CH_2(211)^* + (100)^* = (211)^* + CH_2(100)^*$	1.0×1013	25000	146440	144.87
92	$CH(211)^* + (100)^* = (211)^* + CH(100)^*$	1.0×1013	119000	119940	144.87
93	$C(211)^* + (100)^* = (211)^* + C(100)^*$	1.0×1013	196000	113440	144.87
94	$H(211)^* + (100)^* = (211)^* + H(100)^*$	1.0×1013	13000	1500	0
95	$H_2O(211)^* + (100)^* = (211)^* + H_2O(100)^*$	1.0×1013	300	0	0
96	$OH(211)^* + (100)^* = (211)^* + OH(100)^*$	1.0×1013	19000	2500	0
97	$O(211)^* + (100)^* = (211)^* + O(100)^*$	1.0×1013	61000	-13000	0
98	$CO(211)^* + (100)^* = (211)^* + CO(100)^*$	1.0×1013	3000	9000	0
99	$CHO(211)^* + (100)^* = (211)^* + CHO(100)^*$	9.87×1011	6333	53314	81.84
100	$COH(211)^* + (100)^* = (211)^* + COH(100)^*$	1.0×1013	25000	-39500	0
101	$CO_2(211)^* + (100)^* = (211)^* + CO_2(100)^*$	1.0×1013	0	0	0

Table S3. Elementary steps in CO_2 methanation (Reaction 52-101).

E	Å1				E_{ads}	_{EF} [eV]				
External field [V/	H	0	СН	СО	CH ₃	CO ₂	СНО	С	ОН	S
0.50	-2.78	-5.12	-6.49	-1.75	-2.16	-0.05	-3.32	-6.63	-3.44	-5.18
0.25	-2.80	-5.16	-6.43	-1.81	-2.02	-0.03	-3.27	-6.65	-3.30	-5.16
0	-2.80	-5.19	-6.39	-1.89	-1.92	-0.03	-3.23	-6.68	-3.16	-5.15
-0.25	-2.81	-5.23	-6.37	-2.00	-1.83	-0.08	-3.22	-6.73	-3.04	-5.17
-0.50	-2.81	-5.26	-6.35	-2.14	-1.76	-0.19	-3.24	-6.75	-2.93	-5.21

Table S4. Direct effects on the adsorption energy with an electric field.

Table S5. Mulliken charge (upper side) and the number of electrons (bottom side) of each adsorbed species on Ni surface.

Mulliken charge [e]						
Species on slab	Atom	EF=0.5	EF=0.25	EF=0	EF=-0.25	EF=-0.5
Н	Н	-0.27	-0.27	-0.27	-0.27	-0.27
0	0	-0.52	-0.53	-0.55	-0.56	-0.57
СН	Н	0.25	0.22	0.19	0.17	0.14
	С	-0.72	-0.73	-0.73	-0.74	-0.74
CO	С	-0.08	-0.08	-0.09	-0.09	-0.09
	Ο	-0.25	-0.29	-0.34	-0.38	-0.42
CH ₃	H_1	0.16	0.15	0.13	0.12	0.11
	H_2	0.16	0.14	0.13	0.12	0.1
	H_3	0.16	0.15	0.13	0.12	0.11
	С	-1.04	-1.03	-1.03	-1.03	-1.03
CO ₂	С	0.95	0.94	0.93	0.94	0.94
	O_1	-0.49	-0.49	-0.49	-0.49	-0.5
	O_2	-0.49	-0.49	-0.49	-0.49	-0.5
СНО	Н	0.25	0.22	0.19	0.17	0.14
	С	-0.28	-0.29	-0.3	-0.3	-0.31
	0	-0.37	-0.39	-0.41	-0.44	-0.46
С	С	-0.45	-0.46	-0.48	-0.49	-0.5
ОН	Н	0.47	0.46	0.44	0.42	0.4
	Ο	-0.78	-0.78	-0.79	-0.78	-0.78
S	S	0.02	-0.03	-0.07	-0.12	-0.17

The number of electrons						
Species on slab	EF=0.5	EF=0.25	EF=0	EF=-0.25	EF=-0.5	
Н	1.251	1.256	1.260	1.262	1.262	
Ο	6.519	6.528	6.544	6.551	6.567	
СН	5.439	5.471	5.502	5.535	5.566	
СО	10.247	10.300	10.353	10.383	10.431	
CH ₃	7.465	7.515	7.560	7.591	7.634	
CO ₂	15.770	15.794	15.794	15.799	15.794	
СНО	11.297	11.377	11.431	11.496	11.547	
С	4.442	4.458	4.471	4.485	4.515	
ОН	7.248	7.284	7.300	7.314	7.339	
S	5.947	5.997	6.045	6.096	6.139	

Table S6. Mulliken charge of 3-fold Ni atoms (average) or top Ni atom in the case of each adsorbed species.

Species on slab	EF=0.5	EF=0.25	EF=0	EF=-0.25	EF=-0.5
H (fcc)	0.07	0.06	0.05	0.03	0.02
O (fcc)	0.18	0.17	0.16	0.15	0.15
CH (fcc)	0.17	0.16	0.15	0.14	0.13
CO (<i>hcp</i>)	0.11	0.10	0.09	0.09	0.08
CH3 (fcc)	0.18	0.17	0.17	0.16	0.15
$CO_2(top)$	0.00	-0.02	-0.04	-0.05	-0.07
CHO (<i>hcp</i>)	0.13	0.13	0.13	0.13	0.12
C (<i>hcp</i>)	0.13	0.12	0.11	0.09	0.08
OH (fcc)	0.12	0.12	0.11	0.10	0.09
S (fcc)	-0.06	-0.07	-0.07	-0.08	-0.08

Table S7. Relative value of C, OH, and S species based on the adsorption energy without an electric field.

External field [V/Å]		$\Delta E_{ads, EF}$ [eV]	
	С	ОН	S
0.50	0.05	-0.28	-0.03
0.25	0.03	-0.14	-0.01
-0.25	-0.05	0.12	-0.02
-0.50	-0.07	0.23	-0.06

Table S8. Direct effects on the surface reaction energy with an electric field.

External field [V/Å]		$E_{rxn, EF}$ [eV]	·
External field [V/A]	$\mathrm{CHO}^* + {}^* \to \mathrm{CH}^* + \mathrm{O}^*$	$\mathrm{CO}_2^* + * \rightarrow \mathrm{CO}^* + \mathrm{O}^*$	$CH_3^* + H^* \rightarrow CH_4 + 2^*$
0.5	-0.27	-0.70	0.23
0.25	-0.31	-0.82	0.11
0	-0.33	-0.92	0.01
-0.25	-0.34	-1.02	-0.07
-0.5	-0.33	-1.08	-0.13

Table S9. Activation barrier parameters of RDSs under the electric field magnitude EF = $0, \pm 0.25$, or ± 0.5 V/Å.

				-	E _a [J/mol]	
Facet	Reaction	Reaction number	$\mathbf{EF} = 0.5$	EF = 0.25	$\mathbf{EF} = 0$	EF = -0.25	EF = -0.5
	$\mathrm{CH}_3{}^* + \mathrm{H}{}^* \twoheadrightarrow \mathrm{CH}_4 + 2{}^*$	4	150324	138872	129000	122194	115626
(111)*	$\mathrm{CHO}^{*} + * \mathrm{CH}^{*} + \mathrm{O}^{*}$	15	125964	120826	118277	116217	116576
	$\mathrm{CO}_2^* + * \rightarrow \mathrm{CO}^* + \mathrm{O}^*$	35	171035	158375	149000	139286	132608
	$\mathrm{CH}_3{}^* + \mathrm{H}{}^* \mathrm{CH}_4 + 2{}^*$	41	137675	126223	116351	109545	102976
(211)*	$\mathrm{CHO}^{*} + {*} \mathrm{CH}^{*} + \mathrm{O}^{*}$	50	130950	125812	123263	121203	121562
	$\mathrm{CO}_2{}^* + {}^* \mathrm{CO}{}^* + \mathrm{O}{}^*$	55	167916	155255	145880	136166	129489
	$\mathrm{CH}_3{}^* + \mathrm{H}{}^* \twoheadrightarrow \mathrm{CH}_4 + 2{}^*$	73	138324	126872	117000	110194	103626
(100)*	$\mathrm{CHO}^{*}+{}^{*} \rightarrow \mathrm{CH}^{*}+\mathrm{O}^{*}$	82	202687	197549	195000	192940	193299
	$CO_2^* + * \rightarrow CO^* + O^*$	87	171035	158375	149000	139286	132608

Table S10. Effects on the adsorption energy with co-adsorbed oxygen atoms.

O as advantian asymptot			E	Eads, co-ad O [e	V]		
O co-adsorption coverage.	Η	0	СН	СО	CH ₃	CO ₂	СНО
$\theta = 0 (2x2)$	-2.79	-5.18	-6.40	-1.86	-1.87	-0.06	-3.27
$\theta = 0$ (3x2)	-2.76	-5.17	-6.33	-1.82	-1.81	0.01	-3.16
$\theta = 0$ (3x3)	-2.79	-5.12	-6.37	-1.85	-1.89	-0.04	-3.21
$\theta = 1/9$	-2.78	-5.12	-6.35	-1.87	-1.94	-0.09	-3.23
$\theta = 1/6$	-2.69	-4.83	-6.11	-1.69	-1.94	-0.03	-3.01
$\theta = 2/9$	-2.74	-5.05	-6.31	-1.80	-1.92	-0.07	-3.26
$\theta = 1/4$	-2.61	-4.30	-5.86	-1.42	-1.13	-0.06	-2.49
$\theta = 3/9$	-2.56	-4.27	-5.62	-1.20	-1.04	-0.07	-2.42

Table S11. Effects on the surface reaction energy with co-adsorbed oxygen atoms.

O as adaption asymptot	$E_{rxn,co-ad} o [eV]$							
O co-adsorption coverage.	$\mathrm{CHO}^{*}+^{*} \rightarrow \mathrm{CH}^{*}+\mathrm{O}^{*}$	$\mathrm{CO}_2{}^* + {}^* \to \mathrm{CO}{}^* + \mathrm{O}{}^*$	$\mathrm{CH}_3{}^* + \mathrm{H}{}^* \to \mathrm{CH}_4 + 2{}^*$					
$\theta = 0 (2x2)$	-0.37	-0.74	-0.08					
<i>θ</i> =0 (3x2)	-0.44	-0.80	-0.11					
$\theta = 0$ (3x3)	-0.37	-0.72	-0.03					
$\theta = 1/9$	-0.32	-0.69	0.01					
$\theta = 1/6$	-0.01	-0.28	-0.08					
<i>θ=2/9</i>	-0.19	-0.57	-0.06					
$\theta = 1/4$	0.24	0.55	-0.97					
$\theta = 3/9$	0.44	0.81	-1.11					

Fig. S2. Configurations of the initial step (reactants, left side), transition state (middle side), and final step (products, right side) geometries for CHO dissociation, CO_2 dissociation, and CH_4 desorption on Ni (111) facet under oxygen atom coverage $\theta = 1/9$.

				E _a [J/mol]	
Facet	Reaction	Reaction number	$\theta = 0$	$\theta = 1/9$	$\theta = 2/9$
(111)*	$\mathrm{CH}_3{}^* + \mathrm{H}^* \mathrm{CH}_4 + 2^*$	4	129000	79811	63772
	$\mathrm{CHO}^{*} + * \twoheadrightarrow \mathrm{CH}^{*} + \mathrm{O}^{*}$	15	118277	137375	160567
	$CO_2^* + * \rightarrow CO^* + O^*$	35	149000	165077	165552
(211)*	$\mathrm{CH}_3{}^* + \mathrm{H}^* \mathrm{CH}_4 + 2^*$	41	116351	67162	51122
	$\mathrm{CHO}^{*} + {*} \rightarrow \mathrm{CH}^{*} + \mathrm{O}^{*}$	50	123263	142361	165554
	$CO_2^* + * \rightarrow CO^* + O^*$	55	145880	161957	162432
(100)*	$\mathrm{CH}_3{}^* + \mathrm{H}^* \mathrm{CH}_4 + 2^*$	73	117000	67811	51772
	$\mathrm{CHO}^* + * \rightarrow \mathrm{CH}^* + \mathrm{O}^*$	82	195000	214098	237290
	$CO_2^* + * \rightarrow CO^* + O^*$	87	149000	165077	165552

Table S12. Activation barrier parameters of RDSs under oxygen atom coverage $\theta = 0$, 1/9, and 2/9.

References

[1] F. Che, R. Zhang, A. J. Hensley, S. Ha and J. S. McEwen, *Phys. Chem. Chem. Phys.*, 2014, **16**, 2399.

[2] J.-S. McEwen, P. Gaspard, T. Visart de Bocarmé and N. Kruse, *J. Phys. Chem. C*, 2009, **113**, 17045.

[3] J. P. Perdew and Y. Wang, Phys. Rev. B: Condens. Mateer Mater. Phys., 1992, 45, 13244.