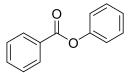
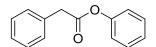
Supplementary Information

Efficient iron-catalyzed direct acylation of amines with carboxylic acids and esters under oxygenated conditions

Maria Obieta, Garazi Urgoitia, María Teresa Herrero, and Raul SanMartin*


1. General Information	S2
2. Preparation of substrates. Synthesis of esters 1 from acyl chlorides	S3
3. Preparation of substrates. Synthesis of phenyl acetate (1b).	S3
4. Preparation of substrates. Synthesis of esters from carboxylic acids.	
General procedure A.	S4
5. Preparation of substrates. Synthesis of esters from carboxylic acids.	
General procedure B.	S5
6. Table S1. Optimization of reaction conditions for the aminolysis of ester 1a	
and carboxylic acid 2b	S6
7. General procedure for the iron-catalyzed acylation of amines with esters	
under oxygenated conditions	S7
8. General procedure for the iron-catalyzed acylation of amines with	
carboxylic acids under oxygenated conditions	S19
9. Copy of CheckCIF file for chiral amide 4bh .	S26
10. Copy of CheckCIF file for chiral amide 4br .	S29
11. UPLC-ESI-QTOF results.	S32
12. Fig S1. A mechanistic proposal for the iron-catalyzed aminolysis of acetic	
acid 2a in the presence of dioxygen.	S34
13. Fig. S2. A proposal for the subsidiary mechanism that explains the	S35
amidation of ester 1a and acid 2a under argon.	
14. References	S36
15. NMR Spectra	S38

1. General Information

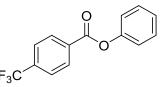

Unless otherwise stated, all reagents and solvents were purchased from commercial suppliers (Acros Organic, Alfa Aesar, Carlo Erbba, Sigma-Aldrich, VWR) and used without further purification. Thin Layer Chromatography (TLC) was carried out on SiO₂ (silica gel 60 F254, Merck), and the spots were located with UV light. Flash chromatography was carried out on SiO2 (silica gel 60, Merck, 230-400 mesh ASTM). Residual solvents were removed under reduced pressure employing Büchi Re-111, Heidolph VV60 and V4001 rotary evaporators. Melting points were determined using Gallenkamp apparatus in open capilliary tubes and are uncorrected. Monodimensional proton and carbon nuclear magnetic resonance spectra (¹H-NMR and ¹³C-NMR) were acquired at 25 °C on a Bruker AC-300 spectrometer (300 MHz for ¹H and 75.4 MHz for ¹³C). Chemical shifts (δ) are reported in ppm relative to residual solvent signals (unless indicated, CDCl₃, 7.26 ppm for ¹H-NMR and 77.00 ppm for ¹³C-NMR) and coupling constants (J) are displayed in hertz (Hz). The following abbreviations are used to indicate the multiplicity in ¹H-NMR spectra: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet. ¹³C-NMR spectra were acquired using a broad band decoupled mode, and DEPT experiments (Distortionless Enhancement by Polarizaton Transfer) were performed to determine the numbers of protons attached to each carbon atom. MS spectra were recorded on an Agilent 7890A gas chromatograph coupled to an Agilent 5975 mass spectrometer under electronic impact (EI) conditions. The obtained data is presented in mass units (m/z). HRMS were recorded on a Micromass GCT spectrometer using chemical ionization (CI) or on an Acquity UPLC coupled to a QTOF mass spectrometer (Waters) using electrospray ionization (ESI-MS).

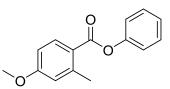
2. Preparation of substrates. Synthesis of esters 1 from acyl chlorides

In a round bottom flask (100 mL) equipped with a magnetic bar, phenol (1.5 mmol) was dissolved in a solution of 10% aqueous sodium hydroxide (2 mL, 5 mmol) under argon. In another round bottom flask (25 mL) TBACI (0.15 mmol) was dissolved in dry DCM (0.5 mL) under argon. In another round bottom flask (50 mL), the acyl chloride (1.5 mmol) was dissolved in dry DCM (1.5 mL) under argon. After cooling the three solutions to 0 °C, the TBACI and acyl chloride solutions were added via cannula to the phenol solution. The reaction mixture was kept under vigorous stirring at 0 °C for 15 minutes and then poured over 50 mL of icy water. The layers were decanted, and the aqueous layer was extracted twice with 40 mL of Et_2O . The combined organic layers were washed with brine (1 x 20 mL), dried over anhydrous Na₂SO₄, and evaporated *in vacuo*. The following esters **1** were obtained by this procedure:

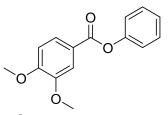
Phenyl benzoate (**1a**).¹ It was prepared following the above general procedure starting from phenol (175 μ L, 1.5 mmol) and benzoyl chloride (175 μ L, 1.5 mmol) to provide **1a** as a white powder (300 mg, >99%). ¹H-NMR (CDCl₃) δ_{H} (ppm): 8.22 (d, *J*=7.4, 2H), 7.65 (t, *J*= 7.4, 1H), 7.55-7.42 (m, 4H), 7.31-7.22 (m, 3H);¹³C-NMR (CDCl₃) δ_{C} (ppm): 165.2, 151.0, 133.6, 130.2, 129.5, 128.6, 125.9, 121.7; LRMS (m/z): 199.1 (MH⁺).

Phenyl 2-phenylacetate (**1c**).² It was prepared following the above general procedure starting from phenol (175 μL, 1.5 mmol) and 2-phenylacetyl chloride (198 μL, 1.5 mmol) to provide **1c** as a yellowish powder (2.67 g, 84%). ¹H-NMR (CDCl₃) $\delta_{\rm H}$ (ppm): 7.43-7.37 (m, 8H); 7.13-7.10 (m, 2H); 3.90 (s, 2H); ¹³C-NMR (CDCl₃) $\delta_{\rm C}$ (ppm): 170.0; 150.8; 133.5; 129.4; 129.4; 128.8; 127.4; 125.9; 121.5; 41.5; LRMS (m/z): 213.1 (MH⁺)

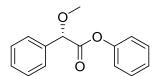

3. Preparation of substrates. Synthesis of phenyl acetate (1b).³

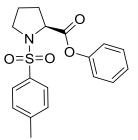

Phenol (1.96 g, 20.9 mmol) was added to a solution of acetic anhydride (3 mL, 30.8 mmol) in pyridine (1 mL) under argon. The mixture was stirred at room temperature until starting material was consumed (monitored by TLC). Upon completion, the reaction was poured onto water (100 mL), and stirred vigorously for further 30 min. The aqueous layer was extracted with EtOAc (3 × 50 mL) and the combined organic layers were washed with aqueous HCl 1M (50 mL), saturated aq. NaHCO₃ (50 mL), water (50 mL) and brine (50 mL), and dried over anhydrous Na₂SO₄. The solvent was evaporated under reduced pressure to provide phenyl acetate (**1b**) as a colorless oil (2.34 g, 82%).¹H-NMR (CDCl₃) δ H (ppm): 7.42-7.37 (m, 2H), 7.26-7.14 (m, 3H), 2.24 (s, 3H). ¹³C-NMR (CDCl₃) δ H (ppm): 169.3, 150.9, 129.5, 125.8, 121.7, 20.9. LRMS (m/z): 137.1 (MH⁺).

4. Preparation of substrates. Synthesis of esters from carboxylic acids. General procedure A.


The carboxylic acid (1.2 mmol) was dissolved in dry toluene (2.3 mL), and the solution was chilled to 0 °C under argon. Thionyl chloride (2.4 mmol) was added dropwise. The mixture was stirred for 30 minutes at room temperature and then the reaction was refluxed for 3 hours. After removing the excess of thionyl chloride and toluene by distillation, the resulting acyl chloride was dissolved in DCM (1.2 mL) under argon. Simultaneously, a solution of TBACI (0.12 mmol) in dry DCM (0.4 mL), and a solution of phenol (1.2 mmol) in 10% aqueous sodium hydroxide (1.6 mL) were prepared under argon. The three solutions were chilled to 0 °C, and the TBACI and acyl chloride solutions were added via cannula to the phenol solution. The reaction mixture was kept under vigorous stirring at 0 °C for 15 minutes and then poured over 10 mL of icy water. The layers were decanted, and the aqueous layer was extracted was twice with 20 mL of Et_2O . The combined organic layers were washed with brine (1 x 10 mL), dried over anhydrous Na₂SO₄, and evaporated *in vacuo*. The following esters **1** were obtained by this procedure:

Phenyl-4-(trifluoromethyl)benzoate (**1h**).⁴ It was prepared following the above general procedure from phenol (141 mg, 1.5 mmol) and 4-(trifluoromethyl)benzoic acid (285.2 mg, 1.5 mmol) to provide **1h** as a white powder (89 mg, 28%). ¹H-NMR (CDCl₃) $\delta_{\rm H}$ (ppm): 8.33 (dd, *J*=8.1, 0.7, 2H), 7.79 (dd, *J*= 8.2, 0.5, 2H), 7.49-7.44 (m, 2H), 7.34-7.22 (m, 3H); ¹³C-NMR (CDCl₃) $\delta_{\rm C}$ (ppm): 164.0, 150.6, 135.0 (*J*= 32), 130.6, 129.6, 126.2, 125.6 (*J*= 3.7), 123.6 (*J*= 272), 121.5, 118.2; LRMS (m/z): 267.0 (MH⁺).


Phenyl 4-methoxy-2-methylbenzoate (1i). It was prepared following the above general procedure from phenol (141 mg, 1.5 mmol) and 2-methyl-4-methoxybenzoic acid (276.9 mg, 1.5 mmol) to provide **1i** as a white powder (267mg, 92%). Mp: 78-81°C (Et₂O); ¹H-NMR (CDCl₃) $\delta_{\rm H}$ (ppm): 8.25-8.22 (m, 1H), 7.47-7.45 (m, 2H), 7.27-7.24 (m, 3H), 6.85 (m, 2H), 3.88 (s, 3H), 2.73 (s, 3H); ¹³C-NMR (CDCl₃) $\delta_{\rm C}$ (ppm): 165.3, 163.0, 151.1, 144.4, 133.7, 129.5, 125.7, 122.0, 117.3, 111.2, 55.4, 22.6; LRMS (m/z): 243.1 (MH⁺); HRMS: Calculated for: C₁₅H₁₄O₃ 242.0943, found: 242.0950.

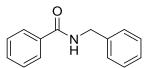

Phenyl 3,4-dimethoxybenzoate (**1j**).⁵ It was prepared following the above general procedure starting from phenol (141 mg, 1.5 mmol) and 3,4-dimethoxybenzoic acid (273.3 mg, 1.5 mmol) to provide **1j** as a white powder (269mg, 87%). ¹H-NMR (CDCl₃) $\delta_{\rm H}$ (ppm): 7.86(dd, *J*=8.4; 2, 1H), 7.68 (d, *J*=2, 1H), 7.44-7.39 (m, 2H), 7.27-7.19 (m, 3H), 6.93 (d, *J*=8.4, 1H), 3.94 (s, 6H);¹³C-NMR (CDCl₃) $\delta_{\rm C}$ (ppm): 164.9, 153.6, 151.1, 148.8, 129.5, 125.8, 124.4, 121.9, 121.8, 112.4, 1104, 56.0; LRMS (m/z): 259.1 (MH⁺).

5. Preparation of substrates. Synthesis of esters from carboxylic acids. General procedure B.⁶

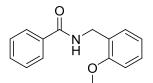
A mixture of the carboxylic acid (2.4 mmol), phenol (2.2 mmol) and 4-dimethylaminopyridine (0.12 mmol) was dissolved in dry DCM (4.6 mL) and chilled to 0 °C under argon. A cooled (0 °C) solution of dicyclohexylcarbodiimide (DCC, 2.4 mmol) in dry DCM (4.6 mL) was added dropwise, and the resulting mixture was stirred at 0 °C for 30 minutes and at room temperature for further 16 hours. The mixture was then filtered and the filtrate was washed with a saturated aqueous solution of NaHCO₃ (1 x 50 mL), aqueous 1M HCl (1 x 50 mL) and brine (1 x 50 mL). The organic layer was dried over anhydrous Na₂SO₄, and evaporated *in vacuo* to give a residue which was purified by flash column chromatography using petroleum ether:ethyl acetate as eluent. The following esters **1** were obtained by this procedure:

Phenyl (S)-2-methoxy-2-phenylacetate (1f). It was prepared following the above general procedure starting from phenol (205 mg, 2.2 mmol) and (S)-2-methoxy-2-phenylacetic acid (400 mg, 2.4 mmol) to provide **1f** as a white powder (336 mg, 58%). [α]_{20/D}: +208.02°, c = 0.04 in CHCl₃; ¹H-NMR (CDCl₃) $\delta_{\rm H}$ (ppm): 7.63-7.60 (m, 2H), 7.47-7.34 (m, 5H), 7.26-7.20 (m, 1H), 7.06-7.02 (m, 2H), 5.06 (s, 1H), 3.55 (s, 3H); ¹³C-NMR (CDCl₃) $\delta_{\rm C}$ (ppm): 169.2, 150.4, 135.8, 129.4, 129.1, 128.9, 127.4, 126.1, 121.2, 82.6, 57.5; LRMS (m/z): 243.1 (MH⁺); HMRS: Calculated for: C₁₅H₁₅O₃ 243.10157, found: 243.10133.

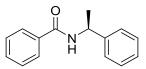
Phenyl tosyl-L-prolinate (1n). It was prepared following the above general procedure starting from phenol (205 mg, 2.2 mmol) and tosyl *L*-proline (646.4 mg, 2.4 mmol) a to provide **1n** as a white powder (273 mg, 33%). Mp (DCM): 86-88°C; $[\alpha]_{20/D}$: -45.8°, c = 0.015 in CHCl₃; ¹H-NMR (CDCl₃) $\delta_{\rm H}$ (ppm): 7.81 (d, *J* = 8.2, 2H), 7.41-7.09 (m, 7H), 4.48 (t, *J* = 6.4, 1H), 3.56-3.52 (m, 1H), 3.41-3.36 (m, 1H), 2.42 (s, 3H), 2.21-2.02 (m, 3H), 1.88-1.82 (m, 1H). ¹³C-NMR (CDCl₃) $\delta_{\rm C}$ (ppm): 170.8, 150.6, 143.7, 135.2, 129.8, 129.4, 127.8, 126.0, 121.3, 60.5, 48.5, 31.1, 24.8, 21.5; LRMS (m/z): 346.1; HRMS: Calculated for: C₁₈H₂₀NO₃S 346.1106, found: 346.1108.

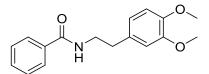

6. Table S1. Optimization of reaction conditions for the aminolysis of ester **1a** and carboxylic acid **2a**.

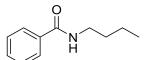
	Ld.		
		$Ph \xrightarrow{0} Ph \xrightarrow$	
		ОН	
		2a 4ab	
Entry	1a/2a	Conditions ^a	Product (%) ^b
1	2a	FeCl ₃ , PhMe, Ar, 100 ^o C, 12h	_c
2	2a	FeCl ₃ , BF ₃ ·OEt ₂ , PhMe, Ar, 100 ^o C, 24h	_c
3	2a	FeCl ₃ , AlCl ₃ , PhMe, Ar, 100 ^o C, 24h	_c
4 5	2a 2a	FeCl₃, TFA, PhMe, Ar, 100 ºC, 24h FeCl₃, <i>p</i> -TsOH, PhMe, Ar, 100 ºC, 24h	4ab (5)
6	2a 2a	FeCl ₃ , PivOH, PhMe, Ar, 100 °C, 24h	4ab (8)
7	2a	FeBr ₂ , PhMe, Ar, 100 °C, 24h	_c
8	2a	FeBr ₂ , PivOH, PhMe, Ar, 100 ^o C, 24h	4ab (7)
9	2a	Fel₂, PivOH, PhMe, Ar, 100 ºC, 24h	_c
10	2a	Fe ₂ (SO ₄) ₃ ·xH ₂ O, PivOH, PhMe, Ar, 100 ^o C, 24h	_c
11	2a	Fe ₂ (ClO ₄) ₂ ·xH ₂ O, PivOH, PhMe, Ar, 100 °C, 24h	_c _c
12 13	2a 2a	Fe ₂ (ClO ₄) ₃ ·xH ₂ O, PivOH, PhMe, Ar, 100 ^o C, 24h Fe(OAc) ₂ , PivOH, PhMe, Ar, 100 ^o C, 24h	_c
13	2a 2a	FeO, PivOH, PhMe, Ar, 100 °C, 24h	_c
15	2a	Fe(acac) ₃ , PivOH, PhMe, Ar, 100 °C, 24h	4ab (8)
16	2a	FeBr ₂ , PivOH, dioxane, Ar, 100 °C, 24h	4ab (11)
17	2a	Fe(acac)₃, PivOH, DMF, Ar, 100 ºC, 24h	4ab (7)
18	2a	FeCl ₃ , PivOH, DMSO, Ar, 100 °C, 24h	4ab (10)
19	2a	FeBr ₂ , PivOH, H ₂ O, Ar, 100 ^o C, 24h	_c
20 21	2a 2a	Fe(acac) ₃ , PivOH, EtOH, Ar, 100 ^o C, 24h FeCl ₃ , PivOH, PEG-400, Ar, 100 ^o C, 24h	4ab (7) - ^c
21	2a 2a	Fe(acac) ₃ , PivOH, DMA, Ar, 100 °C, 24h	4ab (9)
25	2a	Fe(acac) ₃ , PivOH, DEC, Ar, 100 °C, 24h	4ab (15)
26	2a	Fe(acac) ₃ , PivOH, DEC, Air, 100 °C, 24h	4ab (83)
27	2a	Fe(acac) ₃ , PivOH, DEC, O ₂ , 100 ^o C, 24h	4ab (91)
28	2a	Fe(acac) ₂ , PivOH, DEC, O ₂ , 100 ^o C, 24h	4ab (89)
29	2a	FeCl ₃ , PivOH, DEC, O ₂ , 100 °C, 24h	4ab (59)
30	2a	Fe(acac) ₃ , PivOH, DEC, O ₂ , 100 ^o C, 12h	4ab (79)
31 32 ^d	1a 1a	Fe(acac) ₃ , PivOH, DEC, O_2 , 100 °C, 24h	4aa (90) 4aa (70)
33 ^e	1a 1a	Fe(acac) ₃ , PivOH, DEC, O ₂ , 100 ^o C, 24h Fe(acac) ₃ , PivOH, DEC, O ₂ , 100 ^o C, 24h	4aa (79) 4aa (59)
34	1a	Fe(acac) ₃ , PivOH, DEC, Air, 100 °C, 24h	4aa (90)
35	1a	Fe(acac) ₃ , PivOH, DEC, Ar, 100 °C, 24h	4aa (50)
36	1a	Fe(acac) ₃ , PivOH, DEC, O ₂ , 80 °C, 24h	4aa (90)
37	1a	Fe(acac)₃, PivOH, DEC, O₂, 60 ºC, 24h	4aa (84)
38 ^f	1a	Fe(acac) ₃ , PivOH, DEC, O ₂ , 80 ^o C, 24h	4aa (36)
39	2a	Fe(acac) ₃ , PivOH, DEC, O_2 , 80 °C, 24h	4ab (39)
40 ^g	2a	Fe(acac) ₃ , PivOH, DEC, O ₂ , 100 ^o C, 24h	4ab (98)
41 ^h 42 ^{g,h}	1a 20	Fe(acac) ₃ , PivOH, DEC, O_2 , 80 °C, 24h	4aa (92) 4ab (57)
42 ^{9,11} 43 ⁱ	2a 1a	Fe(acac) ₃ , PivOH, DEC, O ₂ , 100 ^o C, 24h Fe(acac) ₃ , DEC, O ₂ , 80 ^o C, 24h	4ab (57) 4aa (52)
43 44 ^{g,i}	2a	Fe(acac) ₃ , DEC, O ₂ , 100 °C, 24h	4ab (12)
45	1a	PivOH, DEC, O ₂ , 80 °C, 24h	4aa (15)
46 ^g	2a	PivOH, DEC, O ₂ , 100 ^o C, 24h	4ab (9)
47 ^{g,j}	2a	Fe(acac) ₃ , PivOH, DEC, O ₂ , 100 ^o C, 24h	4aa (33)
48 ^{h,j}	1a	Fe(acac) ₃ , PivOH, DEC, O_2 , 80 °C, 24h	4ab (25)
49 ^{g, k}	2a	Fe(acac) ₃ , PivOH, DEC, O_2 , 100 °C, 24h	4aa (45)
50 ^{<i>h,k</i>}	1a	Fe(acac) ₃ , PivOH, DEC, O ₂ , 80 ^o C, 24h	4ab (70)

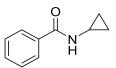

^{*a*} Reaction conditions: **1a** or **2a** (0.54 mmol), amine **3a** (1.5 equiv.), addit. (1 equiv.), [Fe] (0.01 mol%), solvent (1 mL/mmol of **1a/2a**), Ar, Air or O₂ (1 atm), T, 24h. ^{*b*} Isolated yield. ^{*c*} Only traces of target amide were detected. ^{*d*} [M] (10⁻³ mol%). ^{*e*} [M] (10⁻⁴ mol%). ^{*f*} Amine **3a** (1.0 equiv.). ^{*g*} Amine **3a** (2.0 equiv.). ^{*h*} 0.5 equiv. of PivOH were added. ^{*i*} No PivOH was added. ^{*j*} DEC (2 mL/mmol of **1a/2a**). ^{*k*} DEC (0,5 mL/mmol of **1a/2a**).

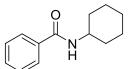
7. General procedure for the iron-catalyzed acylation of amines with esters under oxygenated conditions

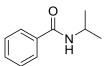

A screw-capped tube equipped with a magnetic stirrer bar was charged with the ester **1** (0.54 mmol), amine **3** (0.81 mmol), pivalic acid (0.27 mmol), Fe(acac)₃ (20 μ L of a 2.7 x 10⁻³ M solution in DEC, 5.4 x 10⁻⁵ mmol) and DEC (0.54 mL). The system was purged with molecular oxygen, and an oxygen-filled balloon (1-1.2 atm) was connected. The mixture was heated at 80 °C under stirring for 48 h. The reaction outcome was monitored by ¹H-NMR. Upon completion, the mixture was cooled down to room temperature, and extracted with aqueous 1M HCl (1 x 10 mL) and water (1 x 10 mL). The aqueous layer was extracted with EtOAc (3 x 10 mL). The combined organic layers were washed with brine (10 mL), dried over anhydrous Na₂SO₄ and the solvent was evaporated *in vacuo* to provide a residue which was purified by flash column chromatography using petroleum ether:ethyl acetate as eluent. Caution: Care should be taken when heating vessels containing flammable solvents in the presence of high concentrations of dioxygen, as the combination of organic solvent and oxygen gas can represent a significant safety hazard. Please operate away from any potential ignition source. The following amides **4** were obtained by this procedure:


N-Benzylbenzamide (4aa).⁷ It was prepared following the above general procedure starting from phenyl benzoate (107 mg, 0.54 mmol) and benzylamine (83 μL, 0.81 mmol) to provide 4aa after purification by flash chromatography (petroleum ether:EtOAc 7:3) as a white powder (105 mg, 92%). Rf: 0.28 (petroleum ether: EtOAc, 7:3); ¹H-NMR (CDCl₃) $\delta_{\rm H}$ (ppm): 7.82-7.69 (m, 2H), 7.49-7.25 (m, 8H), 6.76 (bs, 1H), 4.61 (d, *J*=6, 2H); ¹³C-NMR (CDCl₃) $\delta_{\rm C}$ (ppm): 167.5, 138.3, 134.4, 131.5, 128.7, 128.6, 127.9, 127.6, 127.1, 44.1; LRMS (m/z): 212.1 (MH⁺)

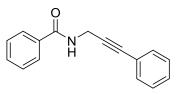

N-(2-Methoxybenzyl)benzamide (4ac).⁸ It was prepared following the above procedure starting from phenyl benzoate (107 mg, 0.54 mmol) and 2-methoxybenzylamine (106 μL, 0.81 mmol) to provide 4ac after purification by flash chromatography (petroleum ether:EtOAc 7:3) as a brownish powder (94 mg, 72%). Rf: 0.23 (petroleum ether:EtOAc 7:3); Mixture of rotamers. Major isomer A: ¹H-NMR (CDCl₃) δ_{H} : 7.78-7.75 (m, 2H), 7.50-7.23 (m, 5H), 6.96-6.88 (m, 2H), 6.74 (bs, 1H), 4.64 (d, *J*= 5.8, 2H), 3.88 (s, 3H); ¹³C-NMR (CDCl₃) δ_{C} : 167.2, 157.6, 134.8, 131.3, 129.9, 128.9, 128.5, 126.9, 120.8, 110.4, 55.5, 39.9, 27.6; LRMS (m/z): 242.1 (MH⁺). Minor isomer B: ¹H-NMR (CDCl₃) δ_{H} : 7.78-7.75 (m, 2H), 7.50-7.23 (m, 5H), 6.74 (bs, 1H), 4.43 (d, *J*= 5.8, 2H), 3.85 (s, 3H); ¹³C-NMR (CDCl₃) δ_{C} : 167.2, 157.6, 134.8, 131.3, 129.6, 128.7, 128.5, 126.2, 120.7, 110.3, 55.3, 39.6, 27.2; LRMS (m/z): 242.1 (MH⁺).

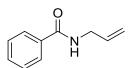

(S)-*N*-(1-Phenethyl)benzamide (4ad).⁹ It was prepared following the above procedure starting from phenyl benzoate (107 mg, 0.54 mmol) and (*S*)-1-phenylethan-1-amine (104 μ L, 0.81 mmol) to provide 4ad after purification by flash chromatography (petroleum ether:EtOAc 7:3) as a white powder (104 mg, 86%). Rf: 0.35 (petroleum ether:EtOAc 7:3); [α]_{20/D}: -15.82°, c = 0.4 in CHCl₃; ¹H-NMR (CDCl₃) δ_{H} (ppm): 7.78 (d, *J*= 9, 2H), 7.47-7.26 (m, 8H), 6.81 (bs, 1H), 5.32 (q, *J*= 9, 1H), 1.58 (d, *J*= 9, 3H); ¹³C-NMR (CDCl₃) δ_{C} (ppm): 166.8, 143.3, 134.6, 131.4, 128.7, 127.1, 127.0, 126.3, 49.3, 21.8; LRMS (m/z): 226.1 (MH⁺).

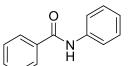

N-(3,4-Dimethoxyphenethyl)benzamide (4ae).¹⁰ It was prepared following the above procedure starting from phenyl benzoate (107 mg, 0.54 mmol) and 2-(3,4-dimethoxyphenyl)ethan-1-amine(137 μL, 0.81 mmol) to provide **4ae** after purification by flash chromatography (petroleum ether:EtOAc 5:5) as a yellowish powder (115 mg, 75%). Rf: 0.29 (petroleum ether:EtOAc 5:5); Mixture of rotamers. Major isomer A: ¹H-NMR (CDCl₃) δ_{H} : 7.69 (d, *J* = 8, 2H), 7.51-7.36 (m, 3H), 6.82-6.70 (m, 3H), 6.29 (bs, 1H), 3.85 (s, 6H), 2.86 (2H, t, *J* = 7), 3.67 (2H, q, *J* = 6.4), 3.85 (6H, s), 6.29 (1H, s), 6.70-6.82 (3H, m), 7.36-7.51 (3H, m), 7.69 (2H, d, *J* = 8). ¹³C-NMR (CDCl₃) δ_{c} : 27.6, 35.12, 41.3, 55.9, 111.4, 111.9, 120.7, 126.8, 128.5, 131.4, 134.6, 149.1, 167.5. LRMS (m/z): 286.1 (MH⁺). Minor isomer B: ¹H-NMR (CDCl₃) δ_{H} : 2.74 (2H, t, J = 7), 3.44 (2H, q, J = 6.4), 3.82 (6H, s), 6.29 (1H, s), 6.70-6.82 (3H, m), 7.36-7.51 (3H, m), 7.69 (2H, d, J = 8). ¹³C-NMR (CDCl₃) δ_{c} : 27.6, 35.3, 40.7, 55.9, 111.3, 111.9, 120.7, 126.8, 128.5, 131.4, 134.6, 147.7. LRMS (m/z): 286.1 (MH⁺)

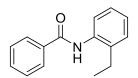

N-Butylbenzamide (**4af**).¹¹ It was prepared following the above procedure starting from phenyl benzoate (107 mg, 0.54 mmol) and butylamine (80 μL, 0.81 mmol) to provide **4af** after purification by flash chromatography (petroleum ether:EtOAc 7:3) as a yellowish oil (74 mg, 89%). Rf: 0.33 (petroleum ether:EtOAc 7:3); ¹H-NMR (CDCl₃) $\delta_{\rm H}$ (ppm): 7.79-7.76 (m, 2H), 7.45-7.37 (m, 3H), 6.69 (bs, 1H), 3.41 (dd, *J*= 6, 8, 2H), 1.62-1.52 (m, 2H) 1.43-1.31 (m, 2H) 0.93 (t, *J*= 6, 3H); ¹³C-NMR (CDCl₃) $\delta_{\rm C}$ (ppm): 167.6, 134.8, 131.1, 128.4, 126.9, 39.8, 31.7, 20.1, 13.8; LRMS (m/z): 178.1 (MH⁺).

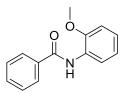

N-Cyclopropylbenzamide (4ag).¹² It was prepared following the above procedure starting from phenyl benzoate (107 mg, 0.54 mmol) and butylamine (56 μL, 0.81 mmol) to provide **4ag** after purification by flash chromatography (petroleum ether:EtOAc 7:3) as a white powder (81 mg, 93%). Rf: 0.19 (petroleum ether:EtOAc 7:3); ¹H-NMR (CDCl₃) $\delta_{\rm H}$ (ppm): 7.75-7.72 (m, 2H), 7.41-7.29 (m, 3H), 6.3 (bs, 1H), 2.86-2.80 (m, 1H) 0.79-0.73 (m, 2H) 0.62-0.58 (m, 2H); ¹³C-NMR (CDCl₃) $\delta_{\rm c}$ (ppm): 169.1, 134.4, 131.4, 128.4, 126.9, 23.2, 6.6; LRMS (m/z): 162.1 (MH⁺)

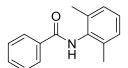

N-Cyclohexylbenzamide (**4a**h).¹³ It was prepared following the above procedure starting from phenyl benzoate (107 mg, 0.54 mmol) and cyclohexylamine (93 μL, 0.81 mmol) to provide **4ah** after purification by flash chromatography (petroleum ether:EtOAc 7:3) as a white powder (95 mg, 87%). Rf: 0.35 (petroleum ether:EtOAc 7:3); Mixture of rotamers. Major isomer A: ¹H-NMR (CDCl₃) δ_H: 7.75 (d, J = 7, 2H), 7.51-7.39 (m, 3H), 6.01 (bs, 1H), 4.04-3.92 (m, 1H), 2.01 (d, *J*= 3.5, 2H), 1.75 (dt, *J*= 13.7, 3.9, 2H), 1.30-1.17 (m, 2H); ¹³C-NMR (CDCl₃) δ_C: 166.7, 135.1, 131.2, 128.5, 126.8, 48.7, 27.6, 25.6, 24.9; LRMS (m/z): 204.1 (MH+). Minor isomer B: ¹H-NMR (CDCl₃) δ_H: 7.75 (d, J = 7, 2H), 7.51-7.39 (m, 3H), 6.01 (bs, 1H), 4.04-3.92 (m, 1H), 2.05 (d, *J*= 3, 2H), 1.65 (dt, *J*= 13, 4, 2H), 1.50-1.37 (m, 2H); ¹³C-NMR (CDCl₃) δ_C: 166.7, 135.1, 131.2, 128.5, 126.8, 48.7, 27.6, 25.6, 24.9; LRMS (CDCl₃) δ_C: 166.7, 135.1, 131.2, 128.5, 126.8, 48.7, 27.6, 25.4, 9; LRMS (m/z): 204.1 (MH+).

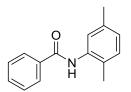

N-Isopropylbenzamide (4ai).¹⁴ It was prepared following the above procedure starting from phenyl benzoate (107 mg, 0.54 mmol) and 2-isopropylamine (69 μL, 0.81 mmol) to provide 4ai after purification by flash chromatography (petroleum ether:EtOAc 7:3) as a white powder (58 mg, 66%). Rf: 0.30 (petroleum ether:EtOAc 7:3); ¹H-NMR (CDCl₃) $\delta_{\rm H}$ (ppm): 7.74 (d, *J*= 6, 2H), 7.45-7.32 (m, 3H), 6.34 (bs, 1H), 4.25 (m (7), *J*= 6, 1H), 1.21 (d, *J*= 6, 6H); ¹³C-NMR (CDCl₃) $\delta_{\rm C}$ (ppm): 166.8, 134.9, 131.2, 128.4, 126.9, 41.9, 22.7; LRMS (m/z): 164.1 (MH⁺).

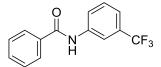

N-(Prop-2-yn-1-yl)benzamide (4aj).¹⁵ It was prepared following the above procedure starting from phenyl benzoate (107 mg, 0.54 mmol) and prop-2-yn-1-amine (52 μL, 0.81 mmol)to provide 4aj after purification by flash chromatography (petroleum ether:EtOAc 7:3) as a yellowish powder (67 mg, 78%). Rf: 0.20 (petroleum ether:EtOAc 7:3); ¹H-NMR (CDCl₃) $\delta_{\rm H}$ (ppm): 7.79 (d, *J*= 6, 2H), 7.52-7.38 (m, 3H), 6.67 (bs, 1H), 4.23 (q, *J*= 3, 2H), 2.26 (t, *J*= 3, 1H); ¹³C-NMR (CDCl₃) $\delta_{\rm c}$ (ppm): 167.3, 133.7, 131.8, 128.6, 127.1, 79.6, 71.7, 29.7; LRMS (m/z): 159.0 (MH⁺)


N-(3-phenylprop-2-yn-1-yl)benzamide (4ak).¹⁶ It was prepared following the above procedure starting from phenyl benzoate (107 mg, 0.54 mmol) and 3-phenylprop-2-yn-1-amine (106 mg, 0.81 mmol)to provide 4ak after purification by flash chromatography (petroleum ether:EtOAc 7:3) as a white powder (120 mg, 94%). Rf: 0.43 (petroleum ether:EtOAc 7:3); ¹H-RMN (CDCl₃) $\delta_{\rm H}$ (ppm): 7.75-7.72 (m, 2H), 7.44-7.38 (m, 1H), 7.35-7.29 (m, 4H), 7.23-7.19 (m, 3H), 6.59 (bs, 1H, NH), 4.39 (d, 2H, *J*= 5.1); ¹³C-RMN (CDCl₃) $\delta_{\rm C}$ (ppm): 167.2, 133.9, 131.8, 131.7, 128.6, 128.5, 128.3, 127.1, 122.6, 84.8, 83.6, 30.6; LRMS (m/z): 235.2 (M⁺).

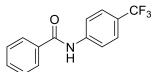

N-Allylbenzamide (4al).¹⁵ It was prepared following the above procedure starting from phenyl benzoate (107 mg, 0.54 mmol) and allylamine (61 μL, 0.81 mmol) to provide 4al after purification by flash chromatography (petroleum ether:EtOAc 7:3) as a yellowish oil (74 mg, 85%). Rf: 0.22 (petroleum ether:EtOAc 7:3); ¹H-NMR (CDCl₃) $\delta_{\rm H}$ (ppm): 7.79 (d, *J*= 9, 2H), 7.45-7.33 (m, 3H), 6.86 (bs, 1H), 5.92-5.83 (m, 1H), 5.23-5.10 (m, 2H), 4.03-4.02 (m, 2H); ¹³C-NMR (CDCl₃) $\delta_{\rm C}$ (ppm): 167.6, 134.2, 134.2, 131.4, 128.4, 127.1, 116.3, 42.4; LRMS (m/z): 162.1 (MH⁺).


N-Phenylbenzamide (4am).¹⁷ It was prepared following the above procedure starting from phenyl benzoate (107 mg, 0.54 mmol) and aniline (74 μL, 0.81 mmol) to provide 4am after purification by flash chromatography (petroleum ether:EtOAc 7:3) as a brownish powder (94 mg, 88%). Rf: 0.42 (petroleum ether: EtOAc, 7:3); ¹H-NMR (CDCl₃) $\delta_{\rm H}$ (ppm): 7.93 (bs, 1H), 7.87 (d, *J*= 9, 2H), 7.65 (d, *J*= 9, 2H), 7.57-7.45 (m, 3H), 7.37 (t, *J*= 9, 2H), 7.15 (t, *J*= 9, 1H); ¹³C-NMR (CDCl₃) $\delta_{\rm C}$ (ppm): 165.9, 138.0, 134.0, 131.9, 129.2, 128.8, 127.1, 124.6, 120.3; LRMS (m/z): 198.1 (MH⁺).

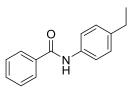

N-(2-Ethylphenyl)benzamide (4an).¹⁸ It was prepared following the above procedure starting from phenyl benzoate (107 mg, 0.54 mmol) and 2-ethylaniline (101 μL, 0.81 mmol) to provide 4an after purification by flash chromatography (DCM 100%) as a white powder (61 mg, 50%). Rf: 0.78 (DCM 100%); ¹H-NMR (CDCl₃) $\delta_{\rm H}$ (ppm): 8.20 (bs, 1H), 7.84 (d, *J*= 6, 2H), 7.57-7.41 (m, 5H) 7.17 (d, *J*= 9, 2H), 2.64 (q, *J*= 9, 2H), 1.24 (t, *J*= 9, 3H). ¹³C-NMR (CDCl₃) $\delta_{\rm C}$ (ppm): 165.9, 135.7, 135.1, 135.0, 131.8, 128.8, 128.6, 127.9, 126.7, 125.8, 124.1, 24.8, 14.0; LRMS (m/z): 226.1 (MH⁺).


N-(2-Methoxyphenyl)benzamide (4ao).¹⁹ It was prepared following the above procedure starting from phenyl benzoate (107 mg, 0.54 mmol) and 2-methoxyaniline (91 μL, 0.81 mmol) to provide 4ao after purification by flash chromatography (petroleum ether:EtOAc 7:3) as a white powder (60 mg, 49%). Rf: 0.37 (petroleum ether:EtOAc 7:3); ¹H-NMR (CDCl₃) $\delta_{\rm H}$ (ppm): 8.56-8.53 (m, 2H), 7.90 (d, *J*= 9, 2H), 7.56-7.48 (m, 3H), 7.12-7.01 (m, 2H), 6.93 (d, *J*= 6, 1H), 3.94 (s, 3H); ¹³C-NMR (CDCl₃) $\delta_{\rm C}$ (ppm): 165.3, 148.2, 135.3, 131.7, 128.8, 127.8, 127.1, 123.9, 121.2, 119.9, 109.9, 55.8; LRMS (m/z): 228.1 (MH⁺).

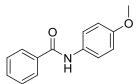
N-(2,6-Dimethylphenyl)benzamide (4ap).⁵⁶ It was prepared following the above procedure starting from phenyl benzoate (107 mg, 0.54 mmol) and 3-trifluoromethylaniline (99 μL, 0.81 mmol) to provide **4ap** after purification by flash chromatography (petroleum ether:EtOAc 7:3) as a white powder (9 mg, 7%). Rf: 0.50 (petroleum ether:EtOAc 7:3); ¹H-NMR (CDCl₃) $\delta_{\rm H}$ (ppm): 8.04 (bs, 1H), 7.89-7.86 (m, 2H), 7.57-7.51 (m, 1H), 7.44-7.38 (m, 2H), 7.18-7.08 (m, 3H), 2.22 (s, 6H); ¹³C-NMR (CDCl₃) $\delta_{\rm C}$ (ppm): 166.1, 135.7, 134.4, 134.2, 131.6, 128.6, 128.2, 127.4, 127.3, 18.4; LRMS (m/z): 225.1 (M⁺).

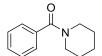


N-(2,6-Dimethylphenyl)benzamide (4aq).⁵⁷ It was prepared following the above procedure starting from phenyl benzoate (107 mg, 0.54 mmol) and 3-trifluoromethylaniline (100 μL, 0.81 mmol) to provide 4aq after purification by flash chromatography (petroleum ether:EtOAc 7:3) as a brownish powder (69 mg, 57%). Rf: 0.74 (petroleum ether:EtOAc 7:3); H-NMR (CDCl₃) $\delta_{\rm H}$ (ppm): 7.92-7.89 (m, 2H), 7.82-7.81 (m, 1H), 7.68 (bs, 1H), 7.62-7.49 (m, 3H), 7.13 (d, *J* = 7.7, 1H), 6.98-6.94 (m, 1H), 2.37 (s, 3H), 2.31 (s, 3H); ¹³C-NMR (CDCl₃) $\delta_{\rm C}$ (ppm): 165.6, 136.7, 135.6, 135.1, 131.8, 130.3, 128.8, 127.0, 126.1, 126.0, 123.7, 21.2, 17.4; LRMS (m/z): 225.1 (M⁺).

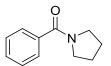


N-(3-(Trifluoromethyl)phenyl)benzamide (4ar).⁵⁸ It was prepared following the above procedure starting from phenyl benzoate (107 mg, 0.54 mmol) and 3-trifluoromethylaniline (101 μL, 0.81 mmol) to provide 4ar after purification by flash chromatography (petroleum ether:EtOAc 8:2) as a yellowish powder (76 mg, 53%). Rf: 0.80 (petroleum ether:EtOAc 7:3); ¹H-NMR (CDCl₃) $\delta_{\rm H}$ (ppm): 8.23 (bs, 1H), 7.96 (t, *J*= 1.8, 1H), 7.90-7.85 (m, 3H), 7.60-7.54 (m, 1H) 7.50-7.39 (m, 4H); ¹³C-NMR (CDCl₃) $\delta_{\rm C}$ (ppm): 166.1, 138.5, 134.3, 132.2, 131.4 (*J* = 32.5), 129.6,

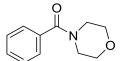

128.8 127.1, 123.8 (*J* = 272.5), 123.4 (*J* = 1.5), 121.1 (*J* = 3.9), 117.1 (*J* = 3.9); LRMS (m/z): 265.0 (M⁺).


N-(4-(Trifluoromethyl)phenyl)benzamide (4as).⁵⁸ It was prepared following the above procedure starting from phenyl benzoate (107 mg, 0.54 mmol) and 4-trifluoromethylaniline (101 μL, 0.81 mmol) to provide 4as after purification by flash chromatography (petroleum ether:EtOAc 6:4) as a yellowish powder (72 mg, 50%). Rf: 0.23 (petroleum ether:EtOAc 7:3); ¹H-NMR (CH₃OD) $\delta_{\rm H}$ (ppm): 7.99-7.94 (m, 4H), 7.71-7.66 (m, 2H), 7.66-7.60 (m, 1H) 7.58-7.52 (m, 2H); ¹³C-NMR (CDCl₃) $\delta_{\rm C}$ (ppm): 167.6, 142.2, 134.6, 131.8, 128.3, 127.3, 128.8 127.1, 125.6 (*J* = 3.8), 124.3 (*J* = 265.1), 120.3; LRMS (m/z): 265.0 (M⁺).

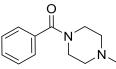
N-(4-Ethylphenyl)benzamide (4at).²⁰ It was prepared following the above procedure starting from phenyl benzoate (107 mg, 0.54 mmol) and 4-ethylaniline (101 μL, 0.81 mmol) to provide 4at after purification by flash chromatography (petroleum ether:EtOAc 7:3) as a white powder (117 mg, 96%). Rf: 0.49 (petroleum ether: EtOAc, 7:3); ¹H-NMR (CDCl3) $\delta_{\rm H}$ (ppm): 7.89-7.86 (m, 4H), 7.56-7.45 (m, 3H), 7.28-7.14 (m, 3H), 2.68 (q, *J*= 9, 2H) 1.27 (t, *J*= 9, 3H); ¹³C-NMR (CDCl3) $\delta_{\rm c}$ (ppm): 165.7, 140.7, 135.5, 135.1, 131.7, 128.7, 128.4, 127.0, 120.4, 28.3, 15.7; LRMS (m/z): 226.1 (MH⁺)

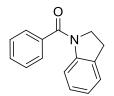


N-(4-Methoxyphenyl)benzamide (4au).²¹ It was prepared following the above procedure starting from phenyl benzoate (107 mg, 0.54 mmol) and 4-methoxyaniline (93 μL, 0.81 mmol) to provide 4au after purification by flash chromatography (petroleum ether:EtOAc 3:7) as a brown powder (120 mg, 98%). Rf: 0.27 (petroleum ether: EtOAc, 3:7); ¹H-RMN (CDCl₃) $\delta_{\rm H}$ (ppm): 7.80-7.77 (m, 3H, H_{arom} + NH), 7.49-7.36 (m, 5H, H_{arom}), 6.85-6.80 (m, 2H, H_{arom}), 3.73 (s, 3H, OCH₃). ¹³C-RMN (CDCl₃) $\delta_{\rm C}$ (ppm): 165.7 (CO), 156.6 (C_{arom}-O), 135.0 (C_{arom}), 131.7 (C_{arom}-H), 131.0 (C_{arom}), 128.8 (C_{arom}-H), 127.0 (C_{arom}-H), 122.2 (C_{arom}-H), 114.2 (C_{arom}-H), 55.5 (OCH₃). LRMS (m/z): 227.1 (M⁺).

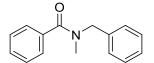


Phenyl(piperidin-1-yl)methanone (4av).²² It was prepared following the above procedure starting from phenyl benzoate (107 mg, 0.54 mmol) and piperidina (80μ L, 0.81 mmol) to provide 4av after purification by flash chromatography (petroleum ether:EtOAc 7:3) as a yellowish oil

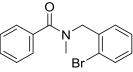

(96 mg, 94%). Rf: 0.30 (petroleum ether:EtOAc 7:3); ¹H-NMR (CDCl₃) δ_{H} (ppm): 7.32-7.31 (m, 5H), 3.63 (bs, 2H), 3.27 (s, 2H), 1.59 (s, 4H), 1.45 (s, 2H); ¹³C-NMR (CDCl₃) δ_{C} (ppm): 170.2, 136.4, 129.3, 128.3, 126.7, 48.7, 43.0, 26.4, 25.7, 24.5; LRMS (m/z): 189.1 (MH⁺)


Phenyl(pyrrolidin-1-yl)methanone (**4ax**).³¹ It was prepared following the above procedure starting from phenyl benzoate (107 mg, 0.54 mmol) and pyrrolidine (68 μ L, 0.81 mmol) to provide **4ax** after purification by flash chromatography (petroleum ether:EtOAc 7:3) as a yellowish powder (72 mg, 76%). Rf: 0.32 (petroleum ether:EtOAc 7:3); ¹H-NMR (CDCl₃) δ_{H} (ppm): 7.47-7.40 (m, 2H), 7.36-7.28 (m, 3H), 3.57 (t, *J*= 7.5, 2H), 3.34 (t, *J*= 7.5, 2H), 1.92-1.75 (m, 4H); ¹³C-NMR (CDCl₃) δ_{C} (ppm): 169.6, 137.2, 129.7, 128.2, 127.0, 49.5, 46.1, 26.3, 24.4; LRMS (m/z); 176.1 (MH⁺)

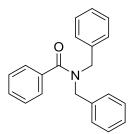
Morpholino(phenyl)methanone (**4ay**).²³ It was prepared following the above procedure starting from phenyl benzoate (107 mg, 0.54 mmol) and morpholine (71 μ L, 0.81 mmol) to provide **4ay** after purification by flash chromatography (petroleum ether:EtOAc 7:3) as a yellowish powder (58 mg, 56%). Rf: 0.43 (petroleum ether:EtOAc 7:3); ¹H-NMR (CDCl₃) $\delta_{\rm H}$ (ppm): 7.38 (m, 5H), 3.67-3.45 (m, 8H); ¹³C-NMR (CDCl₃) $\delta_{\rm C}$ (ppm): 170.4, 135.3, 129.9, 128.5, 127.1, 66.9; LRMS (m/z): 192.1 (MH⁺).



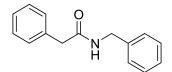
(4-Methylpiperazin-1-yl)(phenyl)methanone (4az).²⁴ It was prepared following the above procedure starting from phenyl benzoate (107 mg, 0.54 mmol) and *N*-methylpiperazine (90 μ L, 0.81 mmol) to provide 4az after purification by flash chromatography (EtOAc:MeOH 9:1) as a yellowish powder (94 mg, 86%). Rf: 0.29 (EtOAc:MeOH 9:1); ¹H-NMR (CDCl₃) $\delta_{\rm H}$ (ppm): 7.38 (s, 5H), 3.78 (s, 2H), 3.43 (s, 2H), 2.46 (s, 2H), 2.35 (s, 2H), 2.30 (s, 3H); ¹³C-NMR (DMSO) $\delta_{\rm C}$ (ppm): 169.4, 136.5, 129.9, 128.9, 127.3, 63.7, 46.1, 14.6; LRMS (m/z): 205.1 (MH₊).

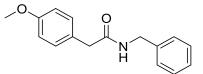


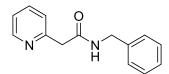
Indolin-1-yl(phenyl)methanone (**4ba**).²⁵ It was prepared following the above procedure starting from phenyl benzoate (107 mg, 0.54 mmol) and indoline (91 μ L, 0.81 mmol) to provide **4ba** after purification by flash chromatography (petroleum ether:DCM 1:9) as a yellowish powder (64 mg, 53%). Rf: 0.30 (petroleum ether:DCM 1:9); ¹H-NMR (CDCl₃) $\delta_{\rm H}$ (ppm): 7.57 (d, *J*= 5.9, 2H), 7.47 (t, *J*= 7.2, 2H), 7.25-7.16 (m, 4H), 7.07 (bs, 1H), 6.990-6.84 (m, 2H), 4.11 (bs, 2H), 3.12 (t, *J*= 8.2, 2H);

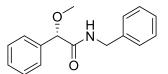

¹³C-NMR (DMSO) δ_c (ppm): 169.0, 142.6, 137.0, 130.3, 129.4, 128.6, 127.3, 127.1, 124.9, 123.9, 50.9 (HSQC), 28.7 (HSQC); LRMS (m/z): 224.1 (MH⁺).

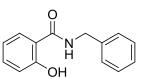
N-Benzyl-*N*-methylbenzamide (4bb).²³ It was prepared following the above procedure starting from phenyl benzoate (107 mg, 0.54 mmol) and *N*-methylbenzylamine (104 μL, 0.81 mmol) to provide 4bb after purification by flash chromatography (petroleum ether:EtOAc 7:3) as a yellowish powder (109 mg, 89%). Rf: 0.25 (petroleum ether:EtOAc 7:3); Mixture of rotamers: Isomer A: ¹H-NMR (CDCl₃) $\delta_{\rm H}$ (ppm): 7.48-7.18 (m, 10H), 4.76 (s, 2H), 3.03 (s, 3H); ¹³C-NMR (CDCl₃) $\delta_{\rm C}$ (ppm): 172.3, 136.2, 129.7, 128.8, 128.5, 128.2, 128.0, 126.9, 55.2, 37.0; LRMS (m/z): 226.1 (MH⁺). Isomer B: ¹H-NMR (CDCl₃) $\delta_{\rm H}$ (ppm): 7.48-7.18 (m, 10H), 4.51 (s, 2H), 2.86 (s, 3H); ¹³C-NMR (CDCl₃) $\delta_{\rm C}$ (ppm): 171.6, 136.2, 129.7, 128.8, 128.5, 128.2, 128.0, 126.9, 50.8, 33.2; LRMS (m/z): 226.1 (MH⁺).

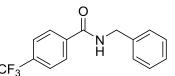

N-(2-Bromobenzyl)-N-methylbenzamide (4bc).²⁶ It was prepared following the above procedure starting from phenyl benzoate (107 mg, 0.54 mmol) and 1-(2-bromophenyl)-*N*-methylmethanamine (120 μL, 0.81 mmol) to provide 4bc after purification by flash chromatography (petroleum ether:EtOAc 7:3) as a colorless oil (129 mg, 79%). Rf: 0.258 (petroleum ether:EtOAc 7:3); Mixture of rotamers: Major isomer A: ¹H-NMR (CDCl₃) $\delta_{\rm H}$ (ppm): 7.56-7.26 (m, 8H), 7.19-7.13 (m, 1H), 4.88 (s, 2H), 3.09 (s, 3H); ¹³C-NMR (CDCl₃) $\delta_{\rm C}$ (ppm): 172.6, 135.8,129.8, 129.1, 128.5, 127.9, 127.1, 126.7, 55.6, 37.4; LRMS (m/z): 303.1 (MH⁺). Minor isomer B: ¹H-NMR (CDCl₃) $\delta_{\rm H}$ (ppm): 7.56-7.26 (m, 8H), 7.19-7.13 (m, 1H), 4.56 (s, 2H), 2.90 (s, 3H); ¹³C-NMR (CDCl₃) $\delta_{\rm C}$ (ppm): 171.8, 133.1, 129.3, 129.1, 128.5, 127.9, 127.1, 126.7, 50.8, 33.7; LRMS (m/z): 303.1 (MH⁺).

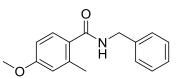

N,*N*-Dibenzylbenzamide (4bd).²⁷ It was prepared following the above procedure starting from phenyl benzoate (107 mg, 0.54 mmol) and *N*,*N*-dibenzylamine (155 μL, 0.81 mmol) to provide 4bd after purification by flash chromatography (petroleum ether:EtOAc 7:3) as a white powder (92 mg, 57%). Rf: 0.38 (petroleum ether:EtOAc 7:3); ¹H-NMR (CDCl₃) $\delta_{\rm H}$ (ppm): 7.53-7.48 (m, 2H), 7.43-7.31 (m, 1H), 7.17 (m, 2H), 4.73 (s, 2H), 4.42 (s, 2H); ¹³C-NMR (CDCl₃) $\delta_{\rm C}$ (ppm): 172.3, 136.5, 129.7, 128.8, 128.6, 128.4, 127.6, 127.1, 126.7, 51.5, 46.9; LRMS: (m/z): 302.1 (MH⁺).

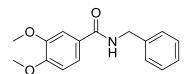

N-Benzylacetamide (**4ab**).²⁸ It was prepared following the above procedure starting from phenyl acetate (479 μL, 3.78 mmol) and benzylamine (55 μL, 0.54 mmol) to provide **4ab** after purification by flash chromatography (petroleum ether:EtOAc 3:7) as a white powder (88 mg, 99%). **4ab** (78 mg, 97%) was also prepared from methyl acetate (300 mL, 3.78 mmol) and benzylamine (55 μL, 0.54 mmol). **4ab** (53 mg, 68%) was also prepared from ethyl acetate (369 μL, 3.78 mmol) and benzylamine (55 μL, 0.54 mmol). **4ab** (53 mg, 68%) was also prepared from ethyl acetate (369 μL, 3.78 mmol) and benzylamine (55 μL, 0.54 mmol). **4ab** (54 mmol). **4ab** (54 mg, 68%) was also prepared from trimethylsilyl acetate (569 μL, 3.78 mmol) and benzylamine (55 μL, 0.54 mmol). **4ab** (53 mg, 68%) was also prepared from trimethylsilyl acetate (569 μL, 3.78 mmol) and benzylamine (55 μL, 0.54 mmol). **4ab** (54 mg, 68%) was also prepared from trimethylsilyl acetate (569 μL, 3.78 mmol) and benzylamine (55 μL, 0.54 mmol). **4ab** (54 mg, 68%) was also prepared from trimethylsilyl acetate (569 μL, 3.78 mmol) and benzylamine (55 μL, 0.54 mmol). **4ab** (54 mg, 68%) was also prepared from trimethylsilyl acetate (569 μL, 3.78 mmol) and benzylamine (55 μL, 0.54 mmol). **4ab** (55 μL, 0.54 mmol). **4b** (55 μL, 0

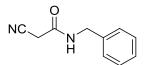

N-Benzyl-2-phenylacetamide (4be).²⁹ It was prepared following the above procedure starting from phenyl 2-phenylacetate (115 mg, 0.54 mmol) and benzylamine (83 μL, 0.81 mmol) to provide 4be after purification by flash chromatography (petroleum ether:EtOAc 5:5) as a white powder (66 mg, 54%). 4be (88 mg, 72%) was also prepared from methyl 2-phenylacetate (58 mL, 0.54 mmol) and benzylamine (83 mL, 0.81 mmol). Rf: 0.43 (petroleum ether:EtOAc 5:5); ¹H-NMR (CDCl₃) $\delta_{\rm H}$ (ppm): 7.34-7.17 (m, 10H), 6.12 (bs, 1H), 4.38 (d, *J*= 6, 2H), 3.58 (s, 2H); ¹³C-NMR (CDCl₃) $\delta_{\rm C}$ (ppm): 171.0, 138.3, 135.0, 129.4, 129.0, 128.6, 127.5, 127.4, 127.3, 43.7, 43.6; LRMS (m/z): 226.1 (MH⁺).

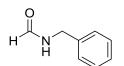

N-Benzyl-2-(4-methoxyphenyl)acetamide (**4bf**).³⁰ It was prepared following the above procedure starting from methyl 2-(4-methoxyphenyl)acetate (86 μL, 0.54 mmol) and benzylamine (83 μL, 0.81 mmol) to provide **4bf** after purification by flash chromatography (petroleum ether:EtOAc 5:5) as a white powder (90 mg, 66%). Rf: 0.33 (petroleum ether:EtOAc 5:5); ¹H-NMR (CDCl₃) $\delta_{\rm H}$ (ppm): 7.33-7.22 (m, 3H), 7.19-7.17 (m, 4H), 6.90-6.85 (m, 2H), 5.75 (s, 1H), 4.40 (d, *J*=5.8, 2H), 3.79 (s, 3H), 3.56 (s, 2H); ¹³C-NMR (CDCl₃) $\delta_{\rm C}$ (ppm): 171.3, 158.9, 138.2, 130.5, 128.6, 127.5, 127.4, 126.7, 114.5, 55.3, 43.5, 42.9; LRMS (m/z): 256.1 (MH⁺).

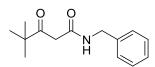

N-Benzyl-2-(pyridin-2-yl)acetamide (**4bg**).³¹ It was prepared following the above procedure starting from methyl 2-(pyridin-2-yl)acetate (73μL, 0.54 mmol) and benzylamine (83 μL, 0.81 mmol) to provide **4bg** after purification by flash chromatography (petroleum ether:EtOAc 3:7) as an orange powder (86 mg, 70%). However, a slight modification of the work-up procedure was required. Instead of adding the aqueous 1M HCl (10 mL) solution, an aqueous solution of NaOH (1M) was added. Rf: 0.21 (petroleum ether:EtOAc 3:7); ¹H-NMR (CDCl₃) $\delta_{\rm H}$ (ppm): 8.47 (s, 1H), 7.81 (s, 1H), 7.63 (t, *J*= 6.7, 1H), 7.27-7.15 (m, 7H), 4.43 (d, *J*= 4.6, 2H), 3.76 (s, 3H); ¹³C-NMR (CDCl₃) $\delta_{\rm C}$ (ppm): 169.3, 155.6, 149.0, 138.4, 137.2, 128.5, 127.5, 127.2, 124.1, 122.1, 45.2, 43.4; LRMS (m/z): 227.1 (MH⁺).

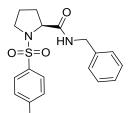

(S)-*N***-Benzyl-2-methoxy-2-phenylacetamide** (**4bh**).³² It was prepared following the above procedure starting from phenyl (*S*)-2-methoxy-2-phenylacetate (65 mg, 0.27 mmol) and benzylamine (41 μL, 0.40 mmol) to provide **4bh** after purification by flash chromatography (petroleum ether:EtOAc 7:3) as a yellowish powder (114 mg, 83%). Rf: 0.20 (petroleum ether:EtOAc 7:3); $[\alpha]_{20/D}$ +18.16⁰, c = 0.006 in CHCl₃; Mp: 84-86 ^oC (EtOAc); ¹H-NMR (CDCl₃) $\delta_{\rm H}$ (ppm): 7.44-7.26 (m, 10H), 7.09 (bs, 1H), 4.69 (t, *J*= 5.5, 2H), 3.35 (s, 3H); ¹³C-NMR (CDCl₃) $\delta_{\rm C}$ (ppm): 170.5, 138.2, 137.1, 128.7, 128.6, 128.5, 127.8, 127.5, 127.1, 83.8, 57.2, 43.1; LRMS (m/z): 256.1 (MH⁺); HRMS: Calculated for: C₁₆H₁₈NO₂ 256.1332, found: 256.1331.

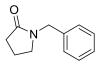

N-Benzyl-2-hydroxybenzamide (**4bi**).³³ It was prepared following the above procedure starting from phenyl 2-hydroxybenzoate (116 mg, 0.54 mmol) and benzylamine (83 μL, 0.81 mmol) to provide **4bi** after purification by flash chromatography (petroleum ether:EtOAc 5:5) as a white powder (81 mg, 66%). Rf: 0.50 (petroleum ether:EtOAc 5:5); ¹H-NMR (CDCl₃) $\delta_{\rm H}$ (ppm): 7.42-7.34 (m, 7H), 7.00 (d, *J*= 9, 1H), 6.83 (t, *J*= 6, 1H), 6.60 (bs, 1H), 4.64 (d, J=6, 2H); ¹³C-NMR (CDCl₃) $\delta_{\rm C}$ (ppm): 169.8, 161.6, 137.4, 134.4, 128.9, 127.9, 125.3, 118.7, 114.1, 43.7; LRMS (m/z): 228.1 (MH⁺).

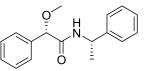

N-Benzyl-4-(trifluoromethyl)benzamide (4bj).³⁴ It was prepared following the above procedure starting from phenyl 4-(trifluoromethyl)benzoate (144 mg, 0.54 mmol) and benzylamine (83 μL, 0.81 mmol) to provide 4bj after purification by flash chromatography (petroleum ether:EtOAc 7:3) as a yellowish powder (62 mg, 55%). Rf: 0.42 (petroleum ether:EtOAc 7:3); ¹H-NMR (CDCl₃) $\delta_{\rm H}$ (ppm): 7.91-7.84 (m, 2H), 7.71-7.68 (m, 2H), 7.36 (s, 5H), 6.44 (s, 1H), 4.66 (d, *J*= 5.2, 2H). ¹³C-NMR (CDCl₃) $\delta_{\rm C}$ (ppm): 166.1, 137.7, 133.3 (*J*= 32), 128.9, 128.7, 128.5, 128.0, 127.8, 127.5, 125.6 (*J*= 3.7), 123.6 (*J*=272), 44.3. LRMS (m/z): 280.1 (MH⁺).


N-Benzyl-4-methoxy-2-methylbenzamide (**4bk**). It was prepared following the above procedure starting from phenyl 4-methoxy-2-methylbenzoate (131 mg, 0.54 mmol) and benzylamine (83 μL, 0.81 mmol) to provide **4bk** after purification by flash chromatography (petroleum ether:EtOAc 7:3) as a white powder (115 mg, 83%). Rf: 0.18 (petroleum ether:EtOAc 7:3); Mp: 133-135°C (EtOAc); ¹H-NMR (CDCl₃) $\delta_{\rm H}$ (ppm): 7.35-7.26 (m, 6H), 6.73-6.66 (m, 2H), 6.12 (bs, 1H), 4.59 (d, *J*= 5.7, 2H), 3.79 (s, 3H), 2.46 (s, 3H); ¹³C-NMR (CDCl₃) $\delta_{\rm C}$ (ppm): 169.6, 160.7, 138.7, 138.4, 128.7, 128.5, 127.8, 127.5, 116.5, 110.8, 55.23, 43.9, 20.4; LRMS (m/z): 256.1 (MH⁺); HRMS: [M⁺] calc. for C₁₆H₁₇NO₂: 255.13; found 255.1259.


N-Benzyl-3,4-dimethoxybenzamide (4bl).³⁵ It was prepared following the above procedure starting from phenyl 3,4-dimethoxybenzoate (134 mg, 0.54 mmol) and benzylamine (83 μL, 0.81 mmol) to provide 4bl after purification by flash chromatography (petroleum ether:EtOAc 3:7) as a white powder (91 mg, 62%). Rf: 0.50 (petroleum ether:EtOAc 3:7); ¹H-NMR (CDCl₃) $\delta_{\rm H}$ (ppm): 7.44-7.28 (m, 7H), 6.89-6.76 (m, 2H), 4.56 (d, *J*= 5.8, 2H), 3.85 (s, 3H), 3.82 (s, 3H); ¹³C-NMR (CDCl₃) $\delta_{\rm C}$ (ppm): 167.1, 151.7, 148.9, 138.5, 128.6, 127.8, 127.4, 126.9, 119.6, 110.6, 110.3, 55.9, 55.9, 44.0; LRMS (m/z): 272.1 (MH⁺).


N-Benzyl-2-cyanoacetamide (4bm).³⁶ It was prepared following the above procedure starting from ethyl 2-cyanoacetate (58 μ L, 0.54 mmol) and benzylamine (83 μ L, 0.81 mmol) to provide 4bm after purification by flash chromatography (petroleum ether:EtOAc 5:5) as a white powder (52 mg, 54%). Rf: 0.35 (petroleum ether:EtOAc 5:5); ¹H-NMR (CDCl₃) $\delta_{\rm H}$ (ppm): 7.36-7.29 (m, 5H), 6.50 (bs, 1H), 4.46 (d, *J*= 6, 2H), 3.38 (s, 2H); ¹³C-NMR (CDCl₃) $\delta_{\rm C}$ (ppm): 160.8, 136.8, 128.9, 128.1, 128.0, 114.7, 44.4, 25.8; LRMS (m/z): 175.1 (MH⁺)


N-Benzylformamide (4bn).³⁷ It was prepared following the above procedure starting from butyl formate (62 μL, 0.54 mmol) and benzylamine (83 μL, 0.81 mmol) to provide 4bn after purification by flash chromatography (petroleum ether:EtOAc 3:7) as a white powder (42 mg, 57%). Rf: 0.29 (petroleum ether:EtOAc 3:7); Mixture of rotamers. Major isomer A: ¹H-NMR (CDCl₃) δ_{H} : 8.24 (s, 1H), 7.37-7.23 (m, 5H), 6.01 (bs, 1H), 4.47 (d, *J* = 6, 2H); ¹³C-NMR (CDCl₃) δ_{C} : 161.1, 137.6, 128.8, 127.7, 127.6, 42.1;. LRMS (m/z): 136.1 (MH⁺). Minor isomer B: ¹H-NMR (CDCl₃) δ_{H} : 8.16 (d, *J* = 11.8, 1H), 7.37-7.23 (m, 5H), 6.01 (bs, 1H), 4.40 (d, *J* = 6, 2H); ¹³C-NMR (CDCl₃) δ_{C} : 164.6, 137.5, 128.9, 127.9, 126.9, 45.5; LRMS (m/z): 136.1 (MH⁺)


N-Benzyl-4,4-dimethyl-3-oxopentanamide (4bo). It was prepared following the above procedure starting from ethyl 4,4-dimethyl-3-oxopentanoate (673 μL, 3.78 mmol) and benzylamine (59 μL, 0.54 mmol) to provide **4bo** after purification by flash chromatography (petroleum ether:EtOAc 7:3) as a yellowish powder (123 mg, 98%). Rf: 0.30 (petroleum ether:EtOAc 7:3); Mp: 65-68°C (EtOAc); ¹H-NMR (CDCl₃) $\delta_{\rm H}$ (ppm): 7.53 (s, 1H), 7.27-7.21 (m, 5H), 4.38 (d, *J*= 5.7, 2H), 3.44 (s, 2H), 1.10 (s, 9H); ¹³C-NMR (CDCl₃) $\delta_{\rm C}$ (ppm): 211.2, 166.3, 138.1, 128.6, 127.6, 127.1, 43.6, 43.4, 25.9. LRMS (m/z): 234.1 (MH⁺). HRMS: Calculated for: C₁₆H₁₇NO₂ 255.1259, found: 255.1257.

(S)-N-Benzyl-1-tosylpyrrolidine-2-carboxamide (**4bp**). It was prepared following the above procedure starting from phenyl tosyl-*L*-prolinate (215 mg, 0.62 mmol) and benzylamine (95 μL, 0.93 mmol) to provide **4bp** after purification by flash chromatography (petroleum ether:EtOAc 5:5) as a yellowish powder (173 mg, 78%). Rf: 0.36 (petroleum ether:EtOAc 5:5); $[\alpha]_{20/D}$ -113.8°, c = 0.025 in CHCl₃; Mp: 116-119°C (EtOAc); ¹H-NMR (CDCl₃) $\delta_{\rm H}$ (ppm): 7.72 (d, *J* = 8.2, 2H), 7.37-7.15 (m, 8H), 4.50 (dd, *J* = 5.9, 2.2, 2H), 4.14 (dd, *J* = 8.6, 2.8, 1H), 3.53 (m, 1H), 3.17 (m, 1H), 2.44 (s, 3H), 2.22-2.18 (m, 1H), 1.77-1.52 (m, 3H); ¹³C-NMR (CDCl₃) $\delta_{\rm C}$ (ppm): 171.2, 144.5, 138.0, 132.7, 130.0, 128.7, 127.9, 127.5, 127.4, 62.7, 50.0, 43.6, 30.2, 24.4, 21.6; HRMS: Calculated for: C₁₉H₂₃N₂O₃S 359.1424, found: 359.1424.

1-Benzylpyrrolidin-2-one (**4bq**).²³ It was prepared following the above procedure starting from ethyl 4-bromobutyrate (78 μ L, 0.54 mmol) and benzylamine (83 μ L, 0.81 mmol) to provide **4bq** after purification by flash chromatography (petroleum ether:EtOAc 3:7) as a yellowish oil (37 mg, 39%). Rf: 0.16 (petroleum ether:EtOAc 3:7); ¹H-RMN (CDCl₃) $\delta_{\rm H}$ (ppm): 7.35-7.22 (m, 5H), 4.45 (s, 2H), 3.26 (t, *J*= 9, 2H), 2.44 (t, *J*= 9, 2H), 2.01 (q, *J*= 9, 2H); ¹³C-RMN (CDCl₃) $\delta_{\rm C}$ (ppm): 174.9, 136.6, 128.7, 128.1, 127.5, 46.6, 30.9, 17.7.LRMS (m/z): 176.1 (MH⁺).

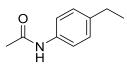
(*S*)-2-Methoxy-2-phenyl-*N*-((*S*)-1-phenylethyl)acetamide (4br).³⁸ It was prepared following the above procedure starting from phenyl (*S*)-2-methoxy-2-phenylacetate (156 mg, 0.64 mmol) and (*S*)-1-phenylethan-1-amine (123 μ L, 0.96 mmol) to provide 4br after purification by flash chromatography (petroleum ether:EtOAc 7:3) as a yellowish powder (155 mg, 90%). Rf: 0.27 (petroleum ether:EtOAc 7:3); [α]20/D -4.74°, c = 0.005 in CHCl₃; Mp:109-111 °C (EtOAc); ¹H-NMR (CDCl₃) $\delta_{\rm H}$ (ppm): 7.46-7.29 (m, 10H), 7.05 (bs, 1H), 5.21-5.11 (m, 1H), 4.64 (s, 1H), 3.36 (s, 3H), 1.52 (d, *J*= 6.9, 3H); ¹³C-NMR (CDCl₃) $\delta_{\rm C}$ (ppm): 169.6, 143.1, 137.1, 128.7, 128.6, 128.4, 127.4, 127.0, 126.3, 83.7, 57.2, 48.3, 21.7; LRMS (m/z): 270.1 (MH⁺).

8. General procedure for the iron-catalyzed acylation of amines with carboxylic acids under oxygenated conditions

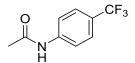
A screw-capped tube equipped with a magnetic stirrer bar was charged with the carboxylic acid **2** (0.54 mmol), amine **3** (1.08 mmol), pivalic acid (0.54 mmol), Fe(acac)₃ (20 μ L of a 2.7 x 10⁻³ M solution in DEC, 5.4 x 10⁻⁵ mmol) and DEC (0.54 mL). The system was purged with molecular oxygen, and an oxygen-filled balloon (1-1.2 atm) was connected. The mixture was heated at 100 °C under stirring for 48 h. The reaction outcome was monitored by ¹H-NMR. Upon completion, the mixture was cooled down to room temperature, and extracted with saturated aqueous NaHCO₃ (1 x 10 mL) and water (1 x 10 mL). The aqueous layer was extracted with EtOAc (3 x 10 mL). The combined organic layers were washed with brine (10 mL), dried over anhydrous Na₂SO₄ and the solvent was evaporated *in vacuo* to provide a residue which was purified by flash column chromatography using petroleum ether:ethyl acetate as eluent. Caution: Care should be taken when heating vessels containing flammable solvents in the presence of high concentrations of dioxygen, as the combination of organic solvent and oxygen gas can represent a significant safety hazard. Please operate away from any potential ignition source. The following amides **4** were obtained by this procedure:

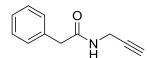
N-Benzylbenzamide (4aa).⁷ It was prepared following the above procedure starting from benzoic acid (66 mg, 0.54 mmol) and benzylamine (118 μ L, 1.08 mmol) to provide 4aa (83 mg, 78%).

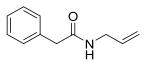
N-Butylbenzamide (**4af**).¹¹ It was prepared following the above procedure starting from benzoic acid (66 mg, 0.54 mmol) and *N*-butylamine (107 μL, 1.08 mmol) to provide **4af** (70 mg, 74%).


*N***-Cyclopropylbenzamide** (4ag).¹² It was prepared following the above procedure starting from benzoic acid (66 mg, 0.54 mmol) and *N*-cyclopropylamine (75 μ L, 1.08 mmol) to provide 4ag (59 mg, 68%).

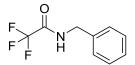
*N***-Phenylbenzamide** (4am).¹⁷ It was prepared following the above procedure starting from benzoic acid (66 mg, 0.54 mmol) and aniline (91 μ L, 1.08 mmol) to provide 4am (85 mg, 75%).


N-Benzylacetamide (4ab).²⁸ It was prepared following the above procedure starting from acetic acid (31 μ L, 0.54 mmol) and benzylamine (118 μ L, 1.08 mmol) to provide 4ab (79 mg, 98%).

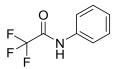

N-Phenylacetamide (4bs).³⁷ It was prepared following the above procedure starting from acetic acid (31 μL, 0.54 mmol) and aniline (91 μL, 1.08 mmol) to provide **4bs** after purification by flash chromatography (petroleum ether:EtOAc 5:5) as a yellowish powder (62 mg, 85%). Rf: 0.24 (petroleum ether:EtOAc 5:5); ¹H-NMR (CDCl3) $\delta_{\rm H}$ (ppm):2.14 (3H, s), 7.08 (1H, t, *J* = 7.5), 7.28 (2H, t, *J* = 7.5), 7.51 (2H, d, *J* = 6). ¹³C-NMR (CDCl₃) $\delta_{\rm C}$ (ppm): 24.4, 120.1, 124.3, 128.9, 138.1, 168.9. LRMS (m/z): 136.1(MH⁺).


N-(4-Ethylphenyl)acetamide (4bt).³⁹ It was prepared following the above procedure starting from acetic acid (31 μL, 0.54 mmol) and 4-ethylaniline (134 μL, 1.08mmol) to provide 4bt after purification by flash chromatography (petroleum ether:EtOAc 6:4) as a white powder (81 mg, 92%). Rf: 0.30 (petroleum ether:EtOAc 6:4); ¹H-NMR (CDCl₃) $\delta_{\rm H}$ (ppm): 7.36 (d, *J*= 8.1, 2H), 7.10 (d, *J*= 8, 2H), 2.57 (q, *J*= 7.6, 1H), 2.12 (s, 3H), 1.18 (t, *J*= 7.6, 3H); ¹³C-NMR (CDCl₃) $\delta_{\rm C}$ (ppm): 168.4, 140.4, 135.5, 128.3, 120.2, 28.3, 24.5, 15.6; LRMS (m/z): 164.1 (MH⁺).

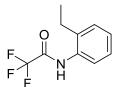
N-(4-(Trifluoromethyl)phenyl)acetamide (4bu).⁵⁹ It was prepared following the above procedure starting from acetic acid (107 mg, 0.54 mmol) and 3-trifluoromethylaniline (135 μL, 1.08 mmol) to provide 4bu after purification by flash chromatography (petroleum ether:DCM 5:5) as a white powder (22 mg, 20%). Rf: 0.46 (petroleum ether:DCM 7:3); ¹H-NMR (CH₃OD) $\delta_{\rm H}$ (ppm): 7.78-7.75 (m, 2H), 7.63-7.59 (m, 2H), 2.17 (s, 3H); ¹³C-NMR (CH₃OD) $\delta_{\rm C}$ (ppm): 170.6, 142.1, 125.6 (*J* = 3.7), 125.1 (*J* = 32.5), 124.3 (*J* = 269.5), 119.2, 22.5. LRMS (m/z): 204.1 (MH⁺).

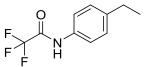


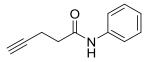
2-Phenyl-*N***-(prop-2-yn-1-yl)acetamide** (**4bv**).⁴⁰ It was prepared following the above procedure starting from but-3-ynoic acid (45.4 mg, 0.54 mmol) and prop-2-yn-1-amine (69 μ L, 1.08 mmol) to provide **4bv** after purification by flash chromatography (petroleum ether:EtOAc 4:6) as a brownish powder (62 mg, 66%). Rf: 0.41 (petroleum ether:EtOAc 4:6); ¹H-NMR (CDCl₃) $\delta_{\rm H}$ (ppm): 7.39-7.25 (m, 5H), 5.61 (bs, 1H), 4.02 (s, 2H), 3.60 (s, 2H), 2.18 (s, 1H); ¹³C-NMR (CDCl₃) $\delta_{\rm C}$ (ppm): 170.6, 134.4, 129.5, 129.1, 127.5, 79.3, 71.6, 43.5, 29.3; LRMS (m/z): 174.1 (MH⁺).

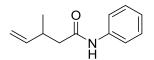


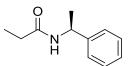
N-Allyl-2-phenylacetamide (4bx).⁴¹ It was prepared following the above procedure starting from but-3-ynoic acid (45.4 mg, 0.54 mmol) and allylamine (81 μL, 1.08 mmol) to provide **4bx** after purification by flash chromatography (EtOAc 100%) as an orange powder (70 mg, 81%). Rf: 0.54 (EtOAc 100%); ¹H-NMR (CDCl₃) $\delta_{\rm H}$ (ppm): 7.39-7.35 (m, 5H), 5.83-5.70 (m, 1H), 5.08 (q, *J* = 1.5, 1H), 5.03 (dq, *J* = 8.8, 1.5, 1H), 3.84 (tt, *J* = 5.7, 1.6, 2H), 3.60 (s, 2H); ¹³C-NMR (CDCl₃) $\delta_{\rm C}$ (ppm): 170.8, 134.8, 134.0, 129.5, 129.1, 127.4, 116.1, 43.8, 41.9; LRMS (m/z): 162.1 (MH⁺).

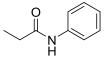

(S)-*N*-Benzyl-2-methoxy-2-phenylacetamide (4bh).³² It was prepared following the above procedure starting from (*S*)-2-methoxy-2-phenylacetic acid (90 mg, 0.54 mmol) and benzylamine (118 μ L, 1.08 mmol) to provide 4bh (91 mg, 66%).

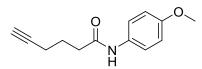

N-Benzyl-2,2,2-trifluoroacetamide (4by).⁴² It was prepared following the above procedure starting from trifluoroacetic acid (TFA, 41 μL, 0.54 mmol) and benzylamine (118 μL, 1.08 mmol) to provide 4by after purification by flash chromatography (petroleum ether:EtOAc 9:1) as an orange powder (64 mg, 59%). Rf: 0.27 (petroleum ether:EtOAc 9:1); ¹H-NMR (CDCl3) $\delta_{\rm H}$ (ppm): 7.40-7.27 (m, 5H), 6.96 (bs, 1H), 4.49 (d, *J*= 6, 2H); ¹³C-NMR (CDCl₃) $\delta_{\rm C}$ (ppm): 157.3 (*J*= 37), 135.9, 129.0, 128.3, 127.9, 115.9 (*J*= 288), 43.9; LRMS (m/z): 204 (MH⁺).

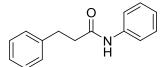

2,2,2-Trifluoro-*N***-phenylacetamide** (**4bz**).⁴³ It was prepared following the above procedure starting from TFA (41 μ L, 0.54 mmol) and aniline (91 μ L, 1.08 mmol) to provide **4bz** after purification by flash chromatography (petroleum ether:EtOAc 7:3) as a yellowish powder (55 mg, 54%). Rf: 0.34 (petroleum ether:EtOAc 7:3); ¹H-NMR (CDCl₃) $\delta_{\rm H}$ (ppm): 8.10 (bs, 1H), 7.57 (d, *J*= 7.9, 2H), 7.38 (t, *J*= 7.9, 2H), 7.25 (d, *J*= 7.9, 1H); ¹³C-NMR (CDCl₃) $\delta_{\rm C}$ (ppm): 154.9 (*J*= 37), 135.1, 129.3, 126.4, 120.6, 115.4 (*J*= 288); LRMS (m/z): 190.0 (MH⁺).

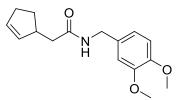

N-(2-Ethylphenyl)-2,2,2-trifluoroacetamide (4ca).⁴⁴ It was prepared following the above procedure starting from TFA (41 μL, 0.54 mmol) and 2-ethylaniline (134 μL, 1.08 mmol) to provide 4ca after purification by flash chromatography (petroleum ether:EtOAc 9:1) as a bronwish powder (74 mg, 63%). Rf: 0.31 (petroleum ether:EtOAc 9:1); ¹H-NMR (CDCl₃) $\delta_{\rm H}$ (ppm): 7.77-7.73 (m, 1H), 7.28-7.26 (m, 3H), 2.62 (q, *J*= 7.6, 2H), 1.26 (t, *J*= 7.6, 3H); ¹³C-NMR (CDCl₃) $\delta_{\rm C}$ (ppm): 155.5 (*J*= 37), 135.8, 132.1, 129, 127.4, 127, 123.8, 115.9 (*J*= 288), 24.1, 13.8; LRMS (m/z): 218.1 (MH⁺).

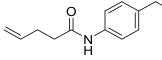

N-(4-Ethylphenyl)-2,2,2-trifluoroacetamide (4cb).⁴⁵ It was prepared following the above procedure starting from TFA (41 μL, 0.54 mmol) and 4-ethylaniline (134 μL, 1.08 mmol) to provide 4cb after purification by flash chromatography (petroleum ether:EtOAc 9:1) as a brownish powder (63 mg, 54%). Rf: 0.29 (petroleum ether:EtOAc 9:1); (63 mg, 54%); ¹H-NMR (CDCl₃) $\delta_{\rm H}$ (ppm): 7.96 (bs, 1H), 7.46 (d, *J*= 8.4, 2H), 7.21 (d, *J*= 8.3, 2H), 2.65 (q, *J*= 7.6, 2H), 1.23 (t, *J*= 7.6, 3H); ¹³C-NMR (CDCl₃) $\delta_{\rm C}$ (ppm): 154.7 (*J*= 37), 142.6, 132.7, 128.7, 120.6, 115.7 (*J*= 288), 28.4, 15.5; LRMS (m/z): 218.1 (MH⁺).


N-Phenylpent-4-ynamide (4cc).⁴⁶ It was prepared following the above procedure starting from 4-pentynoic acid (53 mg, 0.54 mmol) and aniline (91 μL, 1.08 mmol) to provide 4cc after purification by flash chromatography (petroleum ether:EtOAc 7:3) as a brownish powder (64 mg, 68%). Rf: 0.31 (petroleum ether:EtOAc 7:3); ¹H-NMR (CDCl₃) $\delta_{\rm H}$ (ppm): 7.51 (d, *J*= 8.1, 2H), 7.32 (t, *J*= 7.9, 2H), 7.18-7.05 (m, 1H), 2.65 (m, 4H), 2.06 (t, *J*= 2.6, 1H); ¹³C-NMR (CDCl₃) $\delta_{\rm C}$ (ppm): 169.3, 137.7, 129.1, 129, 124.5, 119.9, 82.8, 69.8, 36.3, 14.8; LRMS (m/z): 174.1 (MH⁺).

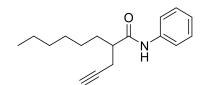

3-Methyl-N-phenylpent-4-enamide (**4cd**).⁴⁷ It was prepared following the above procedure starting from 3-methyl-4-pentynoic acid (62 mg, 0.54 mmol) and aniline (91 µL, 1.08 mmol) to provide **4cd** after purification by flash chromatography (petroleum ether:EtOAc 7:3) as a brownish powder (45 mg, 44%). Rf: 0.37 (petroleum ether:EtOAc 7:3); ¹H-NMR (CDCl₃) $\delta_{\rm H}$ (ppm): 7.49 (d, *J*= 8, 2H), 7.32 (t, *J*= 8, 2H), 7.18 (bs, 1H), 7.10 (t, *J*= 7.4, 1H), 5.85 (ddd, *J*= 17.3, 10.4, 7, 1H), 5.19-4.96 (m, 2H), 2.80 (p, *J*= 6.9, 1H), 2.36 (qd, *J*= 14.3, 7.2, 2H), 1.13 (d, *J*= 6.8, 3H); ¹³C-NMR (CDCl₃) $\delta_{\rm C}$ (ppm): 169.9, 142.7, 137.8, 129.0, 124.3, 119.9, 113.9, 44.8, 34.8, 19.7; LRMS (m/z): 190.1 (MH⁺).


(S)-*N*-(1-Phenylethyl)propionamide (4ce).⁴⁸ It was prepared following the above procedure starting from propanoic acid (40 μ L, 0.54 mmol) and (S)-1-phenylethan-1-amine (139 μ L, 1.08 mmol) to provide 4ce after purification by flash chromatography (petroleum ether:EtOAc 5:5) as a white powder (90 mg, 94%). Rf: 0.43 (petroleum ether:EtOAc 5:5); [α]20/D -17^o, c = 1.26 in CHCl₃; ¹H-NMR (CDCl₃) δ_{H} (ppm): 7.37-7.23 (m, 5H), 5.74 (bs, 1H), 5.14 (p, *J*= 7.1, 1H), 2.20 (q, *J*= 7.6, 1H), 1.48 (d, *J*= 6.9, 1H), 1.15 (t, *J*= 7.6, 2H); ¹³C-NMR (CDCl₃) δ_{C} (ppm): 172.8, 143.3, 128.7, 127.3, 126.2, 48.6, 29.8, 21.7, 9.8; LRMS (m/z): 178.1 (MH⁺).

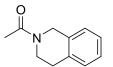

N-Phenylpropionamide (4cf).⁴⁹ It was prepared following the above procedure starting from propanoic acid (40 μL, 0.54 mmol) and aniline (91 μL, 1.08 mmol) to provide 4cf after purification by flash chromatography (petroleum ether:EtOAc 7:3) as a greyish powder (64 mg, 79%). Rf: 0.22 (petroleum ether:EtOAc 7:3); ¹H-NMR (CDCl₃) $\delta_{\rm H}$ (ppm): 7.51 (d, *J*= 8, 2H), 7.32 (t, *J*= 8, 2H), 7.18 (bs, 1H), 7.10 (t, *J*= 7.5, 1H), 2.39 (q, *J*= 7.6, 2H), 1.25 (t, *J*= 7.5, 3H); ¹³C-NMR (CDCl₃) $\delta_{\rm C}$ (ppm): 171.9, 137.9, 129.1, 124.2, 119.73, 30.8, 9.7; LRMS (m/z): 150.1 (MH⁺).


N-(4-Methoxyphenyl)hex-5-ynamide (4cg).⁵⁰ It was prepared following the above procedure starting from 5-hexynoic acid (60 mg, 0.54 mmol), 4-methoxyaniline (133 mg, 1.08 mmol) and pivalic acid (198 mg, 1.94 mmol) to provide 4cg after purification by flash chromatography (petroleum ether:EtOAc 6:4) as an blackish powder (61 mg, 52%). Rf: 0.23 (petroleum ether:EtOAc 6:4); ¹H-NMR (CDCl₃) $\delta_{\rm H}$ (ppm): 7.40 (d, *J*= 8.9, 2H), 7.22 (bs, 1H), 6.84 (d, *J*= 9, 2H), 3.79 (s, 3H), 2.48 (t, *J*= 7.3, 2H), 2.32 (td, *J*= 6.8, 2.7, 2H), 2.01 (t, *J*= 2.6, 1H), 1.94 (t, *J*= 7, 2H); ¹³C-NMR (CDCl₃) $\delta_{\rm C}$ (ppm): 170.4, 156.4, 130.9, 121.8, 114.1, 83.5, 69.4, 55.5, 35.8, 24.0, 17.8; LRMS (m/z): 218.1 (MH⁺).

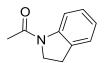
N-3-Diphenylpropanamide (4ch).⁵¹ It was prepared following the above procedure starting from hydrocinnamic acid (81 mg, 0.54 mmol), aniline (91 μL, 1.08 mmol) and pivalic acid (198 mg, 1.94 mmol) to provide 4ch after purification by flash chromatography (petroleum ether:EtOAc 8:2) as a greyish powder (79 mg, 65%). Rf: 0.34 (petroleum ether:EtOAc 8:2); ¹H-NMR (CDCl₃) $\delta_{\rm H}$ (ppm): 7.43 (d, *J*= 7.7, 2H), 7.33-7.20 (m, 6H+CDCl₃), 7.12-7.06 (m, 2H), 3.05 (t, *J*= 7.5, 2H), 2.66 (t, *J*= 7.5, 2H); ¹³C-NMR (CDCl₃) $\delta_{\rm C}$ (ppm): 170.4, 140.6, 137.7, 128.9, 128.7, 128.4, 126.4, 124.3, 119.9, 39.5, 31.6; LRMS (m/z): 226.1 (MH⁺).



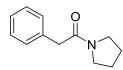
2-(Cyclopent-2-en-1-yl)-*N***-(3,4-dimethoxybenzyl)acetamide** (**4ci**). It was prepared following the above procedure starting from 2-cyclopenten-1-acetic acid (68 mg, 0.54 mmol) and 3,4-dimethoxybenzylamine (168 μ L, 1.08 mmol) to provide **4ci** after purification by flash chromatography (petroleum ether:EtOAc 5:5) as an off-white powder (61 mg, 41%). Rf: 0.27 (petroleum ether:EtOAc 5:5); ¹H-NMR (CDCl₃) $\delta_{\rm H}$ (ppm): 6.81 (s, 3H), 5.77-5.66 (m, 3H), 4.38 (d, *J*= 5.7, 2H), 3.86 (s, 6H), 3.19-3.10 (m, 1H), 2.48-2.00 (m, 5H), 1.52-1.41 (m, 1H); ¹³C-NMR (CDCl₃) $\delta_{\rm C}$ (ppm): 171.9, 149.2, 148.5, 133.9, 131.6, 131.1, 120.1, 111.2, 55.9, 55.8, 43.4, 42.9, 42.7, 31.9, 29.6; LRMS (m/z): 276.1 (MH⁺); HRMS: Calculated for: C₁₆H₂₁NO₃ 275.1521, found 275.1520.

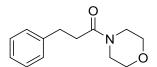

N-(4-Ethylphenyl)pent-4-enamide (4cj).⁵² It was prepared following the above procedure starting from 4-pentenoic acid (54 mg, 0.54 mmol) and 4-ethylaniline (134 μL, 1.08 mmol) to provide 4cj after purification by flash chromatography (petroleum ether:EtOAc 8:2) as a brownish powder (60 mg, 55%). Rf: 0.42 (petroleum ether:EtOAc 8:2); ¹H-NMR (CDCl₃) $\delta_{\rm H}$ (ppm): 7.40 (d, *J*= 8.4, 2H), 7.22 (bs, 1H), 7.14 (d, *J*= 8.4, 2H), 5.93-5.82 (m, 1H), 5.15-5.03 (m, 2H), 2.61

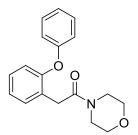
(q, *J*= 7.6, 2H), 2-52-2.42 (m, 4H), 1.21 (t, *J*= 7.6, 3H); ¹³C-NMR (CDCl₃) δ_c (ppm): 170.5, 140.4, 136.9, 135.4, 128.3, 120.1, 115.9, 36.8, 29.5, 28.3, 15.7; LRMS (m/z): 204.1 (MH⁺).



N-Phenyl-2-(prop-2-yn-1-yl)octanamide (4ck). It was prepared following the above procedure starting from 2-hexyl-4-pentynoic acid (105 μL, 0.54 mmol) and aniline (91 μL, 1.08 mmol) to provide **4ck** after purification by flash chromatography (petroleum ether:EtOAc 7:3) as a yellowish oil (55 mg, 54%). Rf: 0.31 (petroleum ether:EtOAc 7:3); (90 mg, 65%); ¹H-NMR (CDCl₃) $\delta_{\rm H}$ (ppm): 7.44-7.26 (m, 3H), 7.12-7.08 (m, 2H), 2.66-2.54 (m, 1H), 2.52-2.35 (m, 2H), 2.01 (t, *J*= 2.6, 1H), 1.75-1.65 (m, 2H), 1.31-1.26 (m, 10H), 0.88 (t, *J*= 6, 3H); ¹³C-NMR (CDCl₃) $\delta_{\rm C}$ (ppm): 179.6, 137.9, 129.3, 124.3, 121.3, 81.3, 69.9, 44.2, 31.6, 31.0, 29.1, 26.8, 22.6, 20.8, 14.0; LRMS (m/z): 258.1 (MH⁺); HRMS: Calculated for: C₁₇H₂₄NO 258.1852, found 258.1848.


Phenyl(piperidin-1-yl)methanone (**4av**).²² It was prepared following the above procedure starting from acetic acid (31 μ L, 0.54 mmol) and piperidine (107 μ L, 1.08 mmol) to provide **4av** (67 mg, 66%).


1-(3,4-Dihydroisoquinolin-2(1*H***)-yl)ethan-1-one (4cl).⁵³** It was prepared following the above procedure starting from acetic acid (31 μL, 0.54 mmol) and 1,2,3,4-tetrahydroisoquinoline (135 μL, 1.08 mmol) to provide **4cl** after purification by flash chromatography (petroleum ether:EtOAc 1:9) as an orange powder (66 mg, 70%). Rf: 0.25 (petroleum ether:EtOAc 1:9); Mixture of rotamers, major isomer A: ¹H-NMR (CDCl₃) δ_{H} : 2.17 (3H, s), 2-83-2.92 (2H, m), 3.67 (2H, t, *J* = 5.9), 4.72 (2H, s), 7.08-7.22 (4H, m). ¹³C-NMR (CDCl₃) δ_{C} : 21.7, 29.4, 44.1, 48.1, 126.4, 126.6, 126.7, 128.3, 133.5, 134.0, 169.6. LRMS (m/z): 176.1 (MH⁺). Minor isomer B: ¹H-NMR (CDCl₃) δ_{H} : 2.18 (3H, s), 2.83 (2H, m), 3.81 (2H, t, *J* = 5.9), 4.61 (2H, s), 7.08-7.22 (4H, m). ¹³C-NMR (CDCl₃) δ_{C} : 21.9, 28.5, 39.5, 44.3, 126.0, 126.5, 126.9, 128.9, 132.6, 135.1, 169.5. LRMS (m/z): 176.1 (MH⁺).


N-Acetylindoline (4cm).⁵⁴ It was prepared following the above procedure starting from 4-acetic acid (31 μL, 0.54 mmol) and indoline (60 μL, 1.08 mmol) to provide 4cm after purification by flash chromatography (petroleum ether:EtOAc 7:3) as a brownish powder (78 mg, 90%). Rf: 0.33 (petroleum ether:EtOAc 7:3); ¹H-NMR (CDCl₃) $\delta_{\rm H}$ (ppm): 2.21 (3H, s), 3.18 (2H, t, *J* = 8.5), 4.03 (2H, t, *J* = 8.5), 7.01 (1H, t, *J* = 7), 7.16-7.21 (2H, m), 8.21 (1H, d, *J* = 7). ¹³C-NMR (CDCl₃) $\delta_{\rm C}$ (ppm): 24.2, 28.0, 48.7, 116.9, 123.6, 124.5, 127.5, 131.1, 141.9, 168.7. LRMS (m/z): 162.1 (MH⁺).

2-Phenyl-1-(pyrrolidin-1-yl)ethan-1-one (4cn).⁵⁵ It was prepared following the above procedure starting from phenylacetic acid (74 mg, 0.54 mmol) and pyrrolidine (90 μ L, 1.08 mmol) to provide **4cn** after purification by flash chromatography (petroleum ether:EtOAc 3:7) as a yellowish oil (61 mg, 61%). Rf: 0.23 (petroleum ether:EtOAc 3:7); Mixture of rotamers. Isomer A: ¹H-NMR (CDCl₃) $\delta_{\rm H}$ (ppm): 1.63-1.73 (2H, m), 3.28 (2H, t, *J* = 6), 3.53 (2H, s, CH₂), 7.08-7.22 (5H, m). ¹³C-NMR (CDCl₃) $\delta_{\rm C}$ (ppm): 24.3, 42.1, 46.8, 126.5, 128.4, 129.0, 135.0, 169.3. LRMS (m/z): 190.1 (MH⁺). Isomer B: ¹H-RMN (CDCl₃) $\delta_{\rm C}$: 26.0, 45.8, 46.8, 126.5, 128.4, 129.0, 135.0, 169.3. LRMS (m/z): 190.1 (MH⁺).

1-Morpholino-3-phenylpropan-1-one (**4co**).²⁷ It was prepared following the above procedure starting from hydrocinnamic acid (81 mg, 0.54 mmol) and morpholine (94 μ L, 1.08 mmol) to provide **4co** after purification by flash chromatography (EtOAc:MeOH 9.5:0.5) as a yellowish oil (74 mg, 63%). Rf: 0.45 (EtOAc:MeOH 9.5:0.5); ¹H-NMR (CDCl₃) $\delta_{\rm H}$ (ppm): 7.32-7.18 (m, 5H), 3.62 (s, 4H), 3.51 (t, *J*= 4.5, 2H), 3.35 (t, *J*= 4.5, 2H), 2.98 (t, *J*= 7.4, 2H), 2.61 (t, *J*= 7.4, 2H); ¹³C-NMR (CDCl₃) $\delta_{\rm C}$ (ppm): 170.9, 141.1, 128.6, 128.5, 126.3, 66.9, 66.5, 45.9, 41.9, 34.8, 31.5; LRMS: (m/z): 220.1 (MH⁺).

1-Morpholino-2-(2-phenoxyphenyl)ethan-1-one (**4cp**). It was prepared following the above procedure starting from 2-(phenoxyohenyl)acetic acid (123.3 mg, 0.54 mmol) and morpholine (94 μ L, 1.08 mmol) to provide **4cp** after purification by flash chromatography (petroleum ether:EtOAc 6:4) as a yellowish powder (104 mg, 65%). Rf: 0.23 (petroleum ether:EtOAc 6:4); ¹H-NMR (CDCl₃) δ_{H} (ppm): 7.39 (d, *J*= 7.4, 1H), 7.32 (t, *J*= 7.8, 2H), 7.23 (t, *J*= 7.9, 1H), 7.15-7.06 (m, 2H), 6.95-6.87 (m, 3H), 3.72 (s, 2H), 3.59 (s, 4H), 3.48 (s, 4H); ¹³C-NMR (CDCl₃) δ_{c} (ppm): 169.6, 157.3, 154.0, 130.9, 129.9, 128.5, 126.7, 124.1, 123.2, 119.2, 118, 66.8, 66.6, 46.4, 42.2, 34.0; LRMS (m/z): 298.1 (MH⁺); HRMS: Calculated for: C₁₈H₂₁NO₃ 297.1365, found 297.1362

9. Copy of the CheckCIF file for chiral amide 4bh

Note: CCDC 2290369 contains the supplementary crystallographic data for this paper

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) a20190015_ia32ca2t150k

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: a20190015_ia32ca2t150k

Bond precision:	C-C = 0.0021 A	Wavelength=	=1.54184
Cell:	a=5.23281(4) alpha=90	b=11.33461(9) beta=90	c=22.6110(2) gamma=90
Temperature:	150 K		2
	Calculated	Reported	
Volume	1341.101(19)	1341.10(2))
Space group	P 21 21 21	P 21 21 21	1
Hall group	P 2ac 2ab	P 2ac 2ab	
Moiety formula	C16 H17 N O2	C16 H17 N	02
Sum formula	C16 H17 N O2	C16 H17 N	02
Mr	255.31	255.30	
Dx,g cm-3	1.265	1.264	
Z	4	4	
Mu (mm-1)	0.665	0.664	
F000	544.0	544.0	
F000′	545.60		
h,k,lmax	6,13,27	6,13,27	
Nref	2496[1487]	2484	
Tmin, Tmax	0.806,0.922	0.760,0.92	27
Tmin'	0.610		
Correction metho AbsCorr = ANALYI	od= # Reported T Lin CICAL	nits: Tmin=0.760 Tma	ax=0.927
Data completenes	ss= 1.67/1.00	Theta(max) = 68.997	1
R(reflections)=	0.0281(2433)		wR2(reflections)= 0.0725(2484)
S = 1.075	Npar= 17	3	

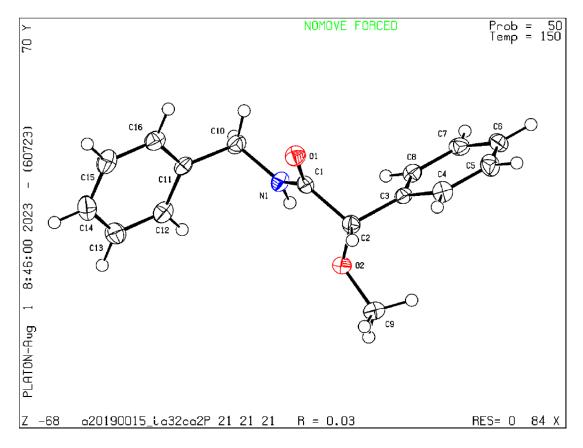
```
The following ALERTS were generated. Each ALERT has the format
      test-name_ALERT_alert-type_alert-level.
Click on the hyperlinks for more details of the test.
🤪 Alert level C
PLAT790_ALERT_4_C Centre of Gravity not Within Unit Cell: Resd. #
                                                                          1 Note
             C16 H17 N O2
PLAT911_ALERT_3_C Missing FCF Refl Between Thmin & STh/L=
                                                           0.600
                                                                         10 Report
PLAT913_ALERT_3_C Missing # of Very Strong Reflections in FCF ....
                                                                          7 Note
Alert level G
PLAT007 ALERT 5 G Number of Unrefined Donor-H Atoms ......
                                                                          1 Report
                                                                       0.75 mm
PLAT063_ALERT_4_G Crystal Size Possibly too Large for Beam Size ..
PLAT142_ALERT_4_G s.u. on b - Axis Small or Missing .....
                                                                    0.00009 Ang.
PLAT143_ALERT_4_G s.u. on c - Axis Small or Missing .....
                                                                    0.00020 Ang.
PLAT910_ALERT_3_G Missing # of FCF Reflection(s) Below Theta(Min).
                                                                          1 Note
PLAT967_ALERT_5_G Note: Two-Theta Cutoff Value in Embedded .res ..
                                                                      138.0 Degree
PLAT978_ALERT_2_G Number C-C Bonds with Positive Residual Density.
                                                                          6 Info
  0 ALERT level A = Most likely a serious problem - resolve or explain
  0 ALERT level B = A potentially serious problem, consider carefully
  3 ALERT level C = Check. Ensure it is not caused by an omission or oversight
```

0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 3 ALERT type 3 Indicator that the structure quality may be low 4 ALERT type 4 Improvement, methodology, query or suggestion 2 ALERT type 5 Informative message, check

7 ALERT level G = General information/check it is not something unexpected

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals


A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E* or *IUCrData*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 06/07/2023; check.def file version of 30/06/2023

10. Copy of the CheckCIF file for chiral amide 4br

Note: CCDC 2290372 contains the supplementary crystallographic data for this paper

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) b20230143_o342m2remducu

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: b20230143_o342m2remducu

Bond precision:	C-C = 0.0066 A	Wavelength	=1.54184		
Cell:	a=5.4042(1)	b=22.6075(4)	c=23.7568(4)		
	alpha=90	beta=95.144(2)	gamma=90		
Temperature:	170 K				
	Calculated	Reported			
Volume	2890.81(9)	2890.81(9)		
Space group	P 21	P 1 21 1			
Hall group	P 2yb	P 2yb			
Moiety formula		C17 H19 N	02		
Sum formula		C17 H19 N	02		
Mr	269.33	269.33			
Dx,g cm-3	1.238	1.238			
Z	8	8			
Mu (mm-1)	0.643	0.643			
F000	1152.0	1152.0			
F000′	1155.33				
h,k,lmax	6,27,28	6,27,28			
Nref	10782[5539]	10736			
Tmin, Tmax	0.922,0.938	0.803,0.9	42		
Tmin'	0.683				
Correction metho AbsCorr = ANALYI	-	imits: Tmin=0.803 Tm	ax=0.942		
Data completenes	ss= 1.94/1.00	Theta(max)= 68.994	4		
R(reflections)=	0.0601(9216)		wR2(reflections)= 0.1738(10736)		
S = 1.131	Npar= 8	307	. ,		

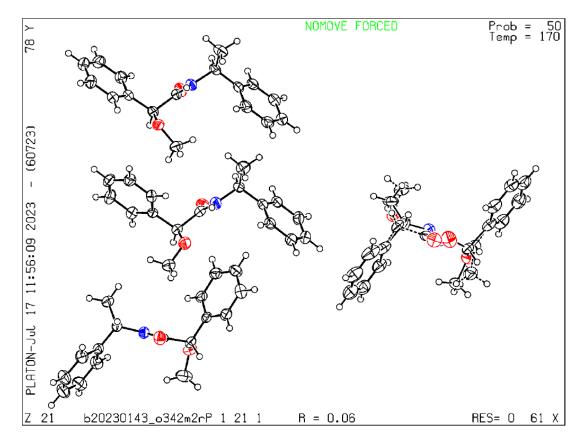
The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level. Click on the hyperlinks for more details of the test.

Alert level C
PLAT089_ALERT_3_C Poor Data / Parameter Ratio (Zmax < 18)
PLAT230_ALERT_2_C Hirshfeld Test Diff for 01B --C1B . 5.7 s.u.
PLAT340_ALERT_3_C Low Bond Precision on C-C Bonds
PLAT340_ALERT_3_C Missing FCF Refl Between Thmin & STh/L= 0.600 2 Report

Alert level G PLAT002_ALERT_2_G Number of Distance or Angle Restraints on AtSite 2 Note PLAT003_ALERT_2_G Number of Uiso or Uij Restrained non-H Atoms ... 16 Report PLAT007_ALERT_5_G Number of Unrefined Donor-H Atoms 4 Report PLAT172_ALERT_4_G The CIF-Embedded .res File Contains DFIX Records 1 Report PLAT186_ALERT_4_G The CIF-Embedded .res File Contains ISOR Records 2 Report 40% Note PLAT398_ALERT_2_G Deviating C-O-C Angle From 120 for O2D 101.9 Degree ..H2E ..H2E . 2.14 A: x,y,z = 1_555 Check PLAT410_ALERT_2_G Short Intra H...H Contact H15D 2.14 Ang. PLAT720_ALERT_4_G Number of Unusual/Non-Standard Labels 1 Note PLAT860_ALERT_3_G Number of Least-Squares Restraints 98 Note PLAT883_ALERT_1_G No Info/Value for _atom_sites_solution_primary . Please Do ! PLAT910_ALERT_3_G Missing # of FCF Reflection(s) Below Theta(Min). 1 Note PLAT933_ALERT_2_G Number of HKL-OMIT Records in Embedded .res File 4 Note PLAT967_ALERT_5_G Note: Two-Theta Cutoff Value in Embedded .res .. 138.0 Degree PLAT978_ALERT_2_G Number C-C Bonds with Positive Residual Density. 0 Info

0 ALERT level A = Most likely a serious problem - resolve or explain 0 ALERT level B = A potentially serious problem, consider carefully 4 ALERT level C = Check. Ensure it is not caused by an omission or oversight 15 ALERT level G = General information/check it is not something unexpected 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 7 ALERT type 2 Indicator that the structure model may be wrong or deficient 6 ALERT type 3 Indicator that the structure quality may be low 3 ALERT type 4 Improvement, methodology, query or suggestion 2 ALERT type 5 Informative message, check

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.


Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E* or *IUCrData*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 06/07/2023; check.def file version of 30/06/2023

11. UPLC-ESI-QTOF-MS results

•	Acetyl	acetone	(pentane-2,4-dione) (MH ⁺)	
---	--------	---------	--	--

Elemental Composition Report	Page
Single Mass Analysis Tolerance = 5.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3	
Monoisotopic Mass, Even Electron Ions 73 formula(e) evaluated with 1 results within limits (up to 50 best isotopic matches for each mass) Elements Used: C: 0.40 - H: 0.40 - N: 0.5 - O: 0.6 - No: 0.1	

C: 0-40 H: 0-40 N: 0-5 O: 0-6 Na: 0-1 MO-1558 PAT230524-94425-1 (0.037) ls (1.00,1.00) C5H9O2

100	1	01.0603										2.0637	m/z
	101.00	101.10	101.20	101.30	101.40	101.50	101.6	0 101.7	70 101.80	101.90	102.00	102.10	11/2
	imum: imum:		5.0	5.0	-1.5 50.0								
Mas	s	Calc. Mass	mDa	PPM	DBE	i-FIT	Norm	Conf(%)	Formula				
101	.0603	101.0603	0.0	0.0	1.5	82.1	n/a	n/a	C5 H9 O2				

\cdot *N*-Benzyl-1-phenylmethanimine (MH⁺)

Elemental Composition Report

Single Mass Analysis Tolerance = 5.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off

Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 198 formula(e) evaluated with 1 results within limits (up to 50 best isotopic matches for each mass) Elements Used:

C: 0-40 H: 0-40 N: 0-5 O: 0-6 Na: 0-1 MO-1558 PAT230524-94425-1 (0.037) Is (1.00,1.00) C14H14N

	8.520+										+012		
100	18	0.1120				1	97.1159				198	.1191	m/z
	96.00	196.20	196.40	196.60	196.80	197.00	197.2	20 197.	40 197.60	197.80	198.00	198.20	111/2
Minimu Maximu			5.0	5.0	-1.5 50.0								
Mass		Calc. Mass	mDa	PPM	DBE	i-FIT	Norm	Conf(%)	Formula				
196.11	26	196.1126	0.0	0.0	8.5	40.0	n/a	n/a	C14 H14 N				

· Phenylmethanimine (MH⁺)

Elemental Composition Report

Single Mass Analysis Tolerance = 5.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 78 formula(e) evaluated with 1 results within limits (up to 50 best isotopic matches for each mass) Elements Used: C: 0-40 H: 0-40 N: 0-5 O: 0-6 Na: 0-1 MO-1558 PAT230524-94425-1 (0.037) ls (1.00,1.00) C7H8N

	425-1 (0.037) Is		1: TOF MS ES+ 9.21e+012									
100 1 0 106.00	06.0657 106.10	106.20	106.30	106.40	106.50	106.6	0 106.7	0 106.80	106.90	107 107.00	.0688 107.10 m/	z
Minimum: Maximum:		5.0	5.0	-1.5 50.0								
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Norm	Conf(%)	Formula				
106.0657	106.0657	0.0	0.0	4.5	81.7	n/a	n/a	C7 H8 N				

Page 1

1: TOF MS ES+

Page 1

e 1

1: TOF MS ES+ 9.40e+012

· Phenol (MH⁺)

Elemental Composition Report

Single Mass Analysis

 $\label{eq:constraint} \begin{array}{l} \text{Tolerance} = 5.0 \mbox{ PM} \ / \ \mbox{ DBE: min} = -1.5, \mbox{ max} = 50.0 \\ \mbox{ Element prediction: Off} \\ \mbox{ Number of isotope peaks used for i-FIT} = 3 \end{array}$

Monoisotopic Mass, Even Electron Ions 63 formula(e) evaluated with 1 results within limits (up to 50 best isotopic matches for each mass) Elements Used: C: 0-40 H: 0-40 N: 0-5 O: 0-6 Na: 0-1 MO-1558 PAT230524-94425-1 (0.037) ls (1.00,1.00) C6H7O 100 0 95.00 95.10 95.0497 96.0531 ------- - - -111 Т 95.20 95.30 95.40 95.50 95.60 95.70 96.00 95.80 95,90 . .

Minimum: Maximum:	5.0	5.0	-1.5 50.0							
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Norm	Conf(%)	Formula		
95.0497	95.0497	0.0	0.0	3.5	81.7	n/a	n/a	C6 H7 O		

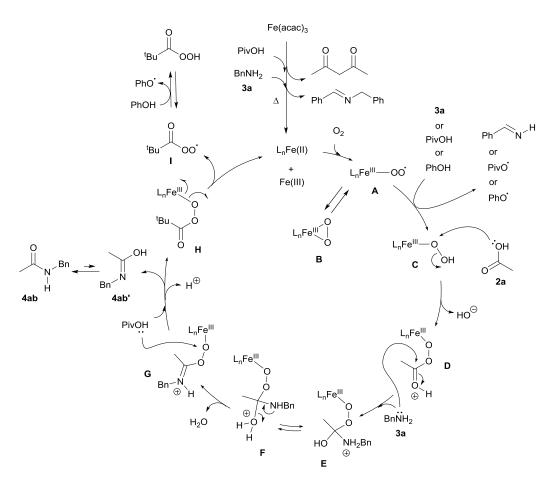
· 2,2-Dimethylpropaneperoxoic acid (perpivalic acid) (MH⁺)

Elemental Composition Report

Single Mass Analysis Tolerance = 5.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

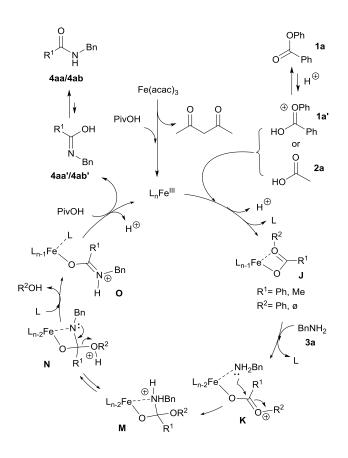
Monoisotopic Mass, Even Electron Ions 100 formula(e) evaluated with 1 results within limits (up to 50 best isotopic matches for each mass) Elements Used: C: 0-40 H: 0-40 N: 0-5 O: 0-6 Na: 0-1 MO-1558 PAT230524-94425-1 (0.037) Is (1.00,1.00) C5H11O3

PAT230524-94425-1 (0.037) ls (1.00,1.00) C5H11O3												1: TOF MS ES+ 9.38e+012			
100	119.00	119.0708 	119.20	119.30	119.40	119.50	119.60	119.70	119.80	119.90	12	20.0743 120.10	⊤ m/z		
	iimum: imum:		5.0	5.0	-1.5 50.0										
Mas	s	Calc. Mass	mDa	PPM	DBE	i-FIT	Norm	Conf(%)	Formula						
119	.0708	119.0708	0.0	0.0	0.5	82.7	n/a	n/a	C5 H11 O3						


Page 1

1: TOF MS ES+ 9.33e+012

96.10 m/z


Page 1

12. Fig. S1

Fig. S2. A mechanistic proposal for the iron-catalyzed aminolysis of acetic acid **2a** in the presence of dioxygen.

13. Fig. S2

Fig. S2. A proposal for the subsidiary mechanism that explains the amidation of ester **1a** and acid **2a** with benzylamine **3a** under argon.

Note: Amides **4aa** and **4ab** were obtained, although with significantly inferior yields, when the reaction had been performed under argon (Table S1). Therefore we hypotesized that a slower, less productive complementary mechanism was taking place in the absence of oxygen. Fig. S3 shows our proposal for this underlying mechanism. Protonolysis of Fe(acac)₃ by pivalic acid would generate iron(III) pivalate species prone to undergo ligand exchange with **1a**' or **2a**, thus forming intermediate **J**. A second ligand exchange with amine 3a to generate **K** would trigger an intramolecular condensation through nucleophilic addition (**M**), prototopy (**N**) and release of R²OH. Protonolysis/ligand exchange at the resulting intermediate **O** would release α -hydroxyimines **4aa'/4ab'** and their tautomers **4aa/4ab** while restarting the catalytic cycle.

14. References

[1] A. M. Simion, I. Hashimoto, Y. Mitoma, N. Egashira, C. Simion, Synth. Commun. 2012, 42, 921-931.

[2] L. Zhang, G. Zhang, M. Zhang, J.Cheng, J. Org. Chem. 2010, 75, 7472-7474.

[3] J. M. Álvarez-Calero, Z. D. Jorge, G. M. Massanet, Org. Lett. 2016, 18, 6344-6347.

[4] M. Zhang, S. Zhang, G. Zhang, F. Chen, J. Cheng, *Tetrahedron Lett.* 2011, 52, 2480-2483.

[5] J. -J. Meng, M. Gao, Y. -P. Wei, W. -Q. Zhang, Chem. Asian J. 2012, 7, 872-875.

[6] A. Groves, J. I. Martínez, J. J. Smith, H. W. Lam, Chem. Eur. J. 2018, 24, 13432-13436.

[7] F. Dalu, M. A. Scorciapino, C. Cara, A. Luridiana, A. Musinu, M. Casu, F. Secci, C. Cannas, *Green Chem.* **2018**, *20*, 375-381.

[8] E. Howard, N. Guzzardi, V. G. Tsanova, A. Stika, B. Patel, Eur. J. Org. Chem. 2018, 6, 794-797.

[9] D. C. Leustra, D. T. Nguyen, J. Mecinovic, Tetrahedron 2015, 71, 5547-5553.

[10] Z. Liu, X. Zhang, J. Li, F. Li, C. Li, X. Jia, J. Li, Org. Lett. 2016, 18, 4052-4055.

[11] N. Schröder, J. Wencel-Delord, F. Glorius, J. Am. Chem. Soc. 2012, 134, 8298-8301.

[12] H. Kondo, K. Itami, J. Yamaguchi, Chem. Sci. 2017, 8, 3799-3803.

[13] G. Cheng, W. Lv, C. Kuai, S. Wen, S. Xiao, Chem. Commun. 2018, 54, 1726-1729.

[14] A. Rolfe, D. A. Probst, K. A. Volp, I. Omar, D. L. Flynn, P. R. Hanson, J. Org. Chem. 2008, 73, 8785-8790.

[15] V. Kumar, S. J. Connon, Chem. Commun. 2017, 53, 10212-10215.

- [16] Wong, V. H. L.; White, A. J. P.; Hor, T. S.; Hii, K. K. Adv. Synth. Catal. 2015, 357, 3943-3948.
- [17] P. Drouhin, T. E. Hurst, A. C. Whitwood, J. K. Taylor, *Tetrahedron* 2015, 71,7124-7136.
- [18] A. Mishra, S. Singh, V. Srivastava, Asian J. Org. Chem. 2018, 7, 1600-1604.

[19] S. Sharif, J. Day, H. N. Hunter, Y. Lu, D. Mitchell, M. J. Rodriguez, M. G. Organ, *J. Am. Chem. Soc.* **2017**, *139*, 18436-18439.

[20] L. Huang, H. Guo, L. Pau, C. Xie, Eur. J. Org. Chem. 2013, 17, 6027-6031.

[21] Zarecki, A. P.; Kolanowski, J. L.; Markiewicz, W. T. Molecules 2020, 25, 1761-1769.

[22] Y. Liu, M. Achtenghagen, R. Liu, M. Szostak, Org. Biomol. Chem. 2018, 16, 1322-1329.

[23] D. C. Braddock, P. D. Lickiss, B. C. Rowley, T. Purnomo, G. Santhakumar, S. J. Fussell, Org. Lett. 2018, 20, 950-953.

[24] I. Iriepa, A. I. Madrid, E. Gálvez, J. Bellanato, J. Molec. Struct. 2006, 787, 8-13.

[25] W. -J. Li, F. -F. Zhao, M. -W. Ding, Synlett 2011, 265-267.

[26] K. Kobayashi, Y. Chikazawa, *Tetrahedron* **2016**, *72*, 5100-5105.

[27] Y. Yasui, S. Tsuchida, H. Miyabe, Y. Takemoto, J. Org. Chem. 2007, 72, 5898-5900.

[28] R. S. L. Chapman, R. Lawrence, J. M. J. Williams, S. D. Bull, Org. Lett. 2017, 19, 4908-4911.

[29] X. Mo, T. D. R. Morgan, H. T. Ang, D. G. Hall, J. Am. Chem. Soc. 2018, 140, 5264-5271.

[30] S. C. Ghosh, S. H. Hong, Eur. J. Org. Chem. 2010, 4266-4270.

[31] X. Jiang, P. Boehm, J. F. Hartwig, J. Am. Chem. Soc. 2018, 140, 1239-1242.

[32] S. Porto, J. M. Seco, J. F. Espinosa, E. Quiñoá, R. Riguera, J. Org. Chem. 2008, 73, 5714-5722.

[33] G. C. Y. Choo, H. Miyamura, S. Kobayashi, Chem. Sci. 2015, 6, 1719-1721.

[34] A. R. Prosser, J. E. Banning, M. Rubina, M. Rubin, Org. Lett. 2010, 12, 3698-3971.

[35] J. Das, D. Banerjee, J. Org. Chem. 2018, 83, 3378-3384.

[36] D. D. Sanz Sharley, J. M. J. Williams, Chem. Commun. 2017, 53, 2020-2023.

[37] R. B. Sonawane, N. K. Rasal, S. V. Jagtap, Org. Lett. 2017, 19, 2078-2081.

[38] R. García, J. M. Seco, S. A. Vázquez, E. Quiñoá, R. Riguera, *J. Org. Chem.* **2006**, *71*, 1119-1130.

[39] S. Hanada, A. Yuasa, H. Kuroiwa, Y. Motoyama, H. Nagashima, *Eur. J. Org. Chem.* **2010**, 1021-1025.

[40] J. P. Weyrauch, A. S. K. Hashmi, A. Schuster, T. Hengst, S. Schetter, A. Littmann, M. Rudolph, M. Hamzic, J. Visus, F. Rominger, W. Frey, J. W. Bats, *Chem. Eur. J.* **2010**, *16*, 956-963.

[41] Q. -B. Zhang, P. -F. Yuan, L. -L. Kai, K. Liu, Y. -L. Ban, X. -Y. Wang, L. -Z. Wu, Q. Liu, Org. Lett. **2019**, *21*, 885-889.

[42] R. J. Bergeron, J. S. McManis, J. Org. Chem. 1988, 53, 3108-3111.

[43] A. Mekhalfia, R. Mutter, W. Heal, B. Chen, Tetrahedron 2006, 62, 5617-5625.

[44] L. Zhu, L. Le, M. Yan, C. -T. Au, R. Qiu, N. Kambe, J. Org. Chem. 2019, 84, 5635–5644.

[45] M. G. Vigorita, T. Previtera, G. Saporito, R. Costa de Pasquale, C. Circosta, F. Occhiuto, *Farmaco, Ed. Sci.* **1984**, *39*, 403-413.

[46] S. Fadel, Y. Hajbi, M. Khouili, S. Lazar, F. Suzenet, G. Guillaumet, *Beilstein J. Org. Chem.* **2014**, *10*, 282-286.

[47] P. Mea, C. Mues, *Tetrahedron* **1988**, *44*, 6841-6853.

[48] C. E. Rye, D. Barker, J. Org. Chem. 2011, 76, 6636-6648.

[49] C. Ramalingan, Y. – T. Park, J. Org. Chem. 2007, 72, 4536-4538.

[50] X.-Y. Liu, C.-M. Che, Angew. Chem. Int. Ed. 2008, 47, 3805-3810.

[51] I. Shiina, Y. Kawakita, *Tetrahedron* **2004**, *60*, 4729-4733.

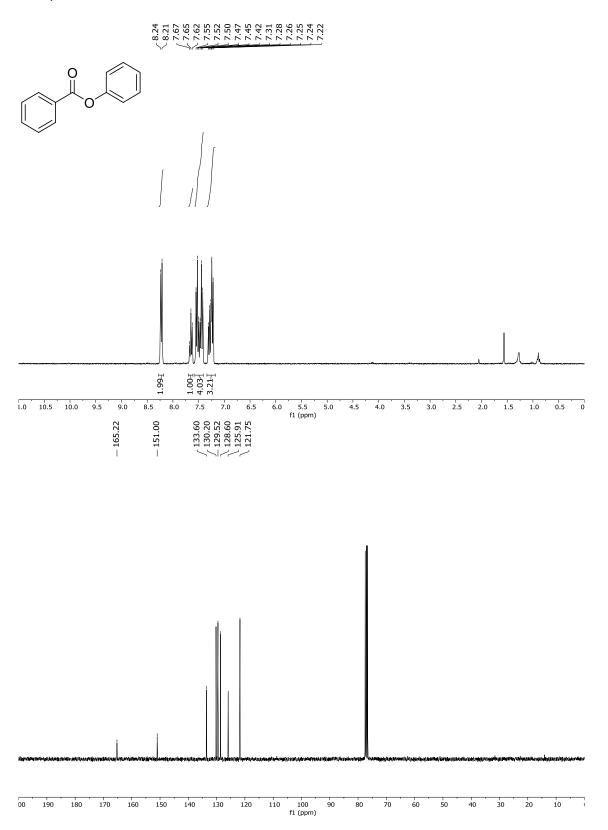
[52] H. Takahata, T. Suzuki, M. Maruyama, K. Moriyama, M. Mozumi, T. Takamatsu, T. Yamazaki, *Tetrahedron* **1988**, *44*, 4777-4786.

[53] S. Kasai, M. Kamaura, M. Kamata, K. Aso, H. Ogino, Y. Nakano, K. Watanabe, T. Kaisho, M. Tawada, Y. Nagisa, S. Takekawa, K. Kato, N. Suzuki, Y. Ishihara, *Bioorg. Med. Chem.* **2011**, *19*, 6261-6273.

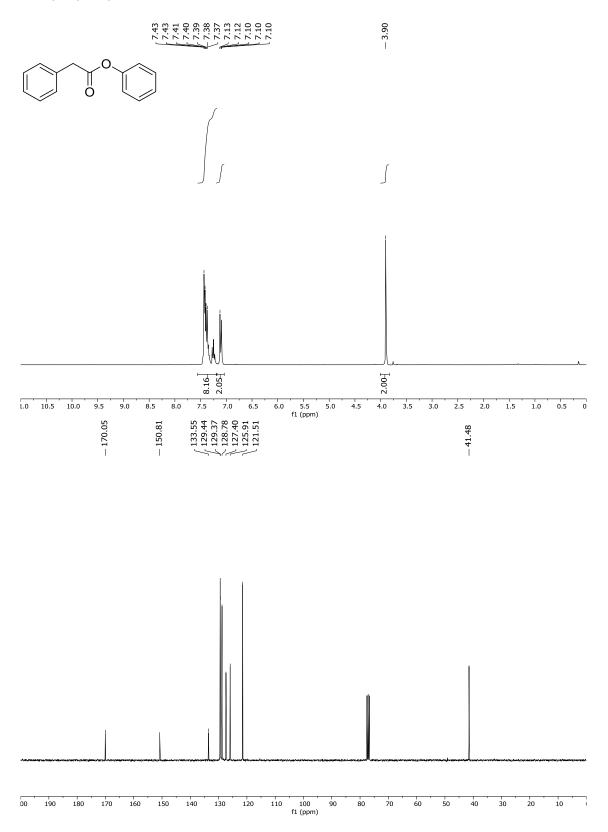
[54] M. D. Ganton, M. A. Kerr, Org. Lett., 2005, 7, 4777-4779.

[55] Kobeissi, M.; Cherry, K.; Jomaa, W. Synth. Commun. 2013, 43, 2955-2965.

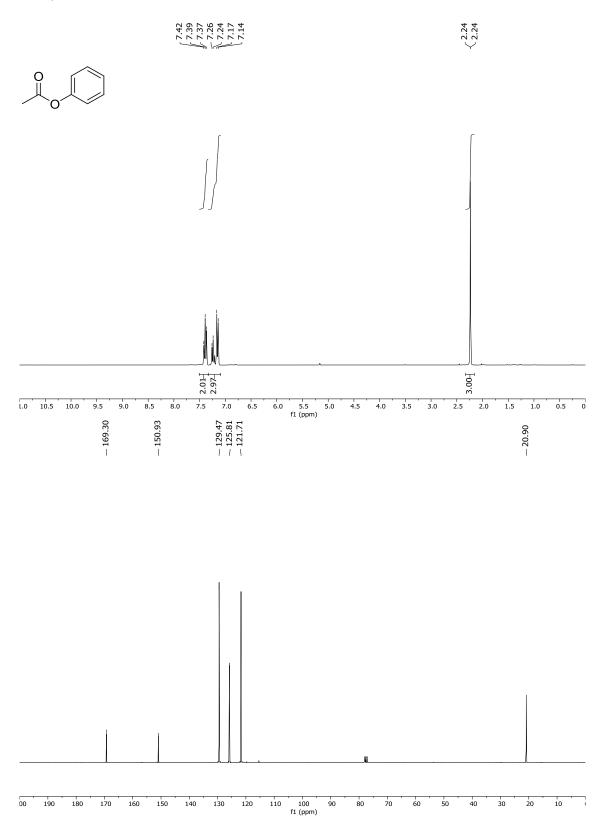
[56] Jiang, H.; Liu, B.; Li, Y.; Wang, A.; Huang, H. Org. Lett. 2011, 13, 1028-1031.

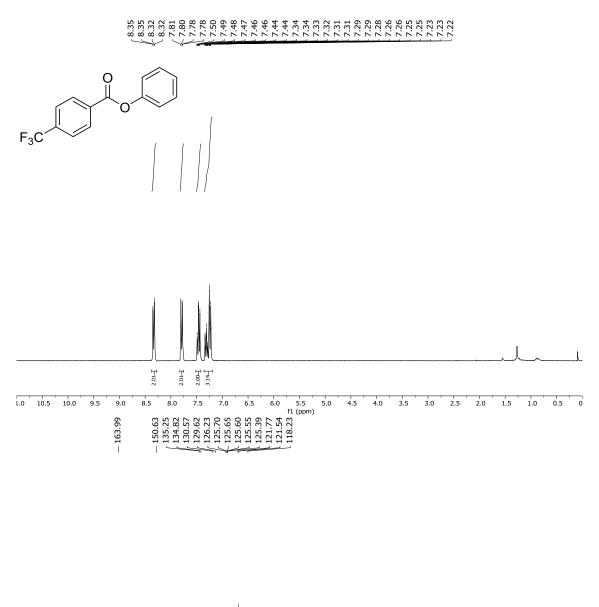

[57] Simkó, D. C.; Elekes, P.; Pázmándi, V.; Novák, Z. Org. Lett. 2018, 20, 676-679.

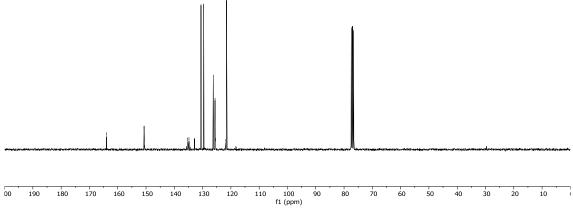
[58] Teo, Y. –C.; Yong, F. –F.; Ithnin, I. K.; Yio, S. –H. T.; Lin, Z. Eur. J. Org. Chem. 2015, 515-524.


[59] Debnath, P.; Baeten, M.; Lefèvre, N.; Van Daele, S.; Maes, B. U. W. Adv. Synth. Catal. **2015**, 357, 197-209.

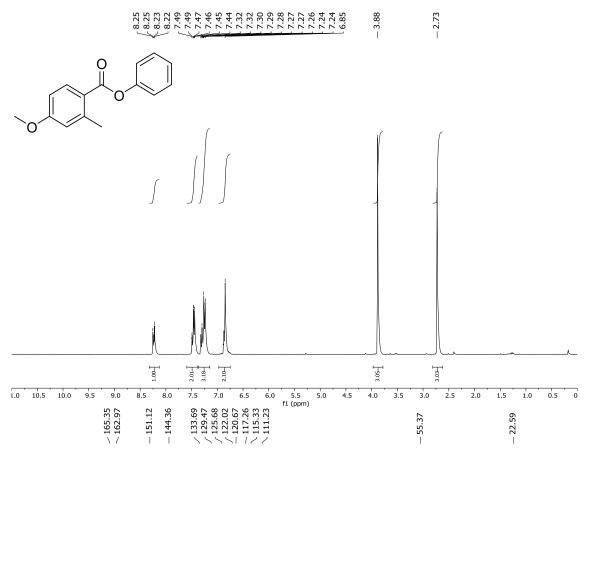
15. NMR Spectra

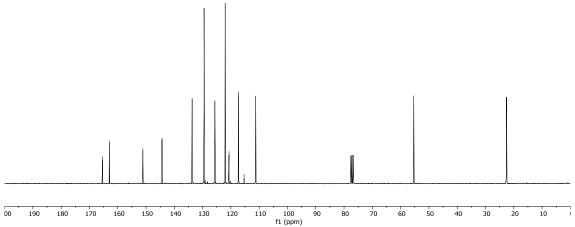

Phenyl benzoate

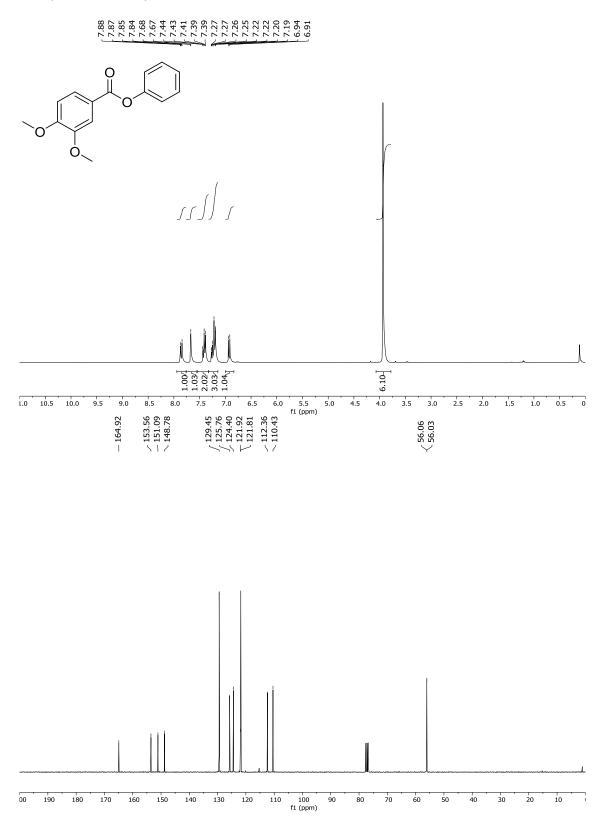

Phenyl 2-phenylacetate



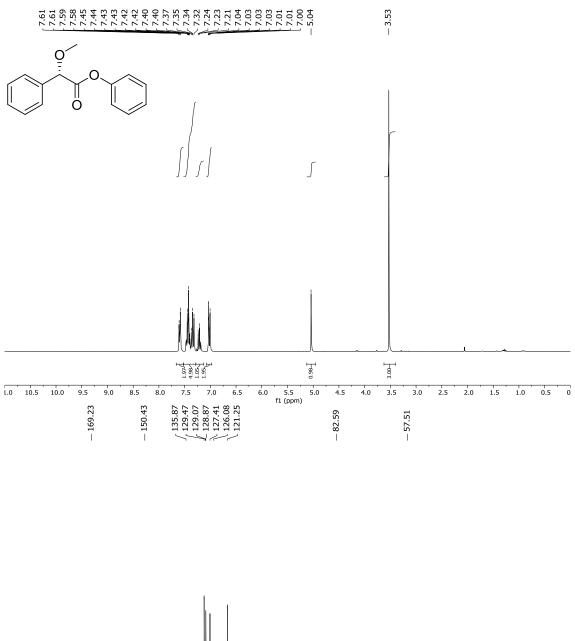
Phenyl acetate

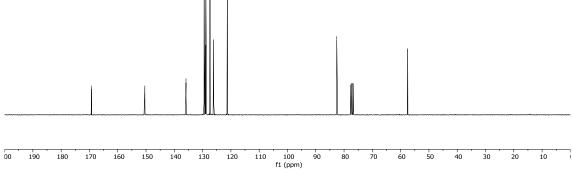



Phenyl 4-(trifluoromethyl)benzoate

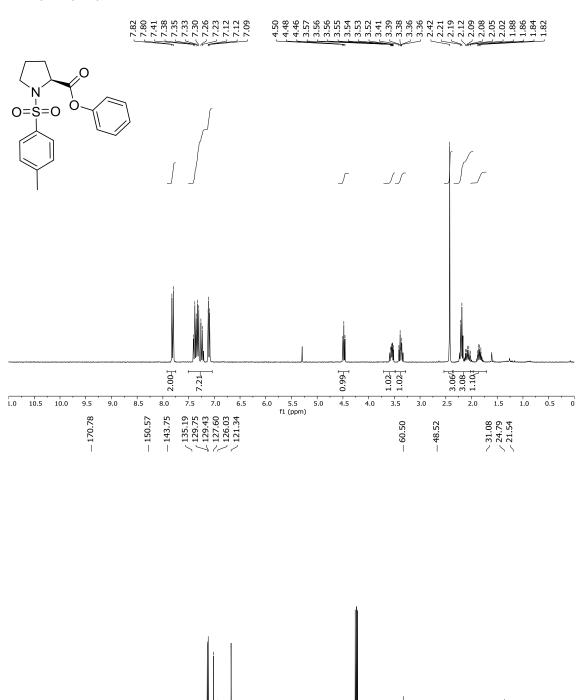


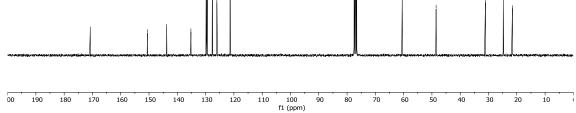
Phenyl 4-methoxy-2-methylbenzoate

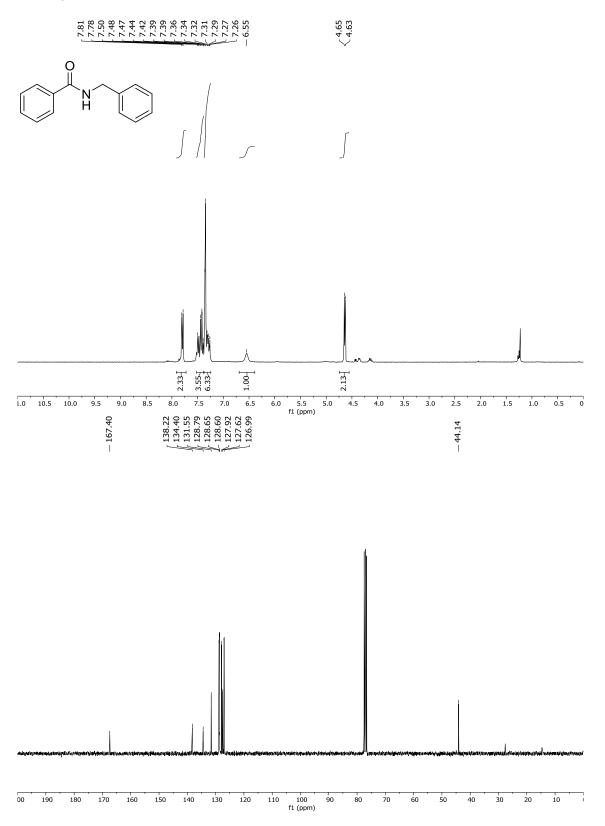




Phenyl 3,4-dimethoxybenzoate

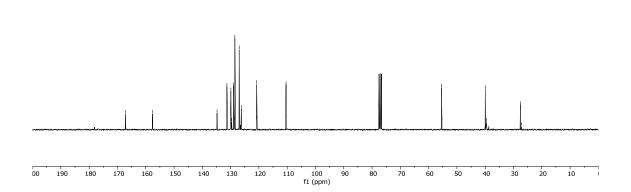


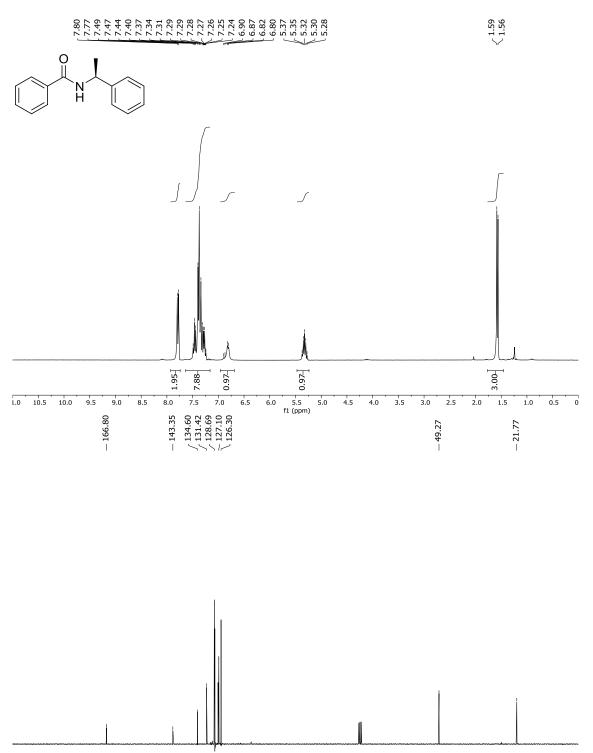

Phenyl (S)-2-methoxy-2-phenylacetate



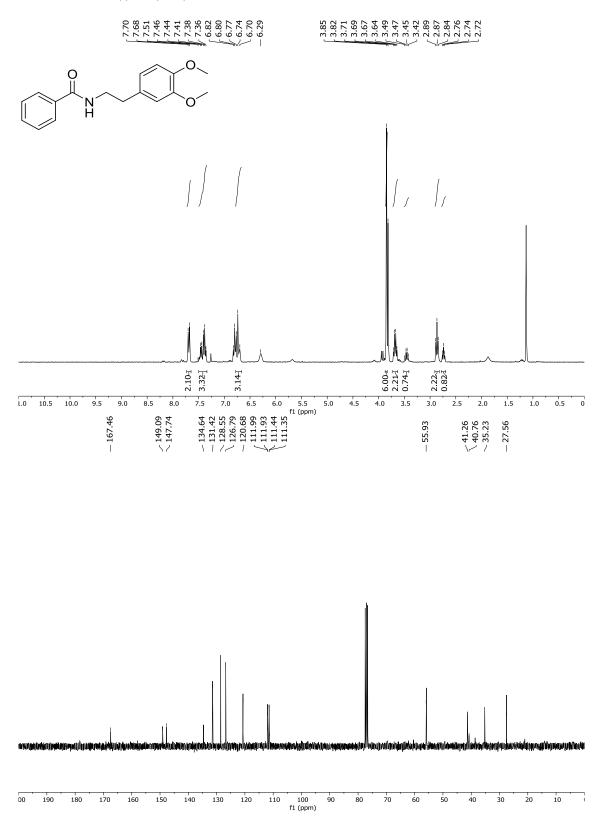
Phenyl tosyl-L-prolinate

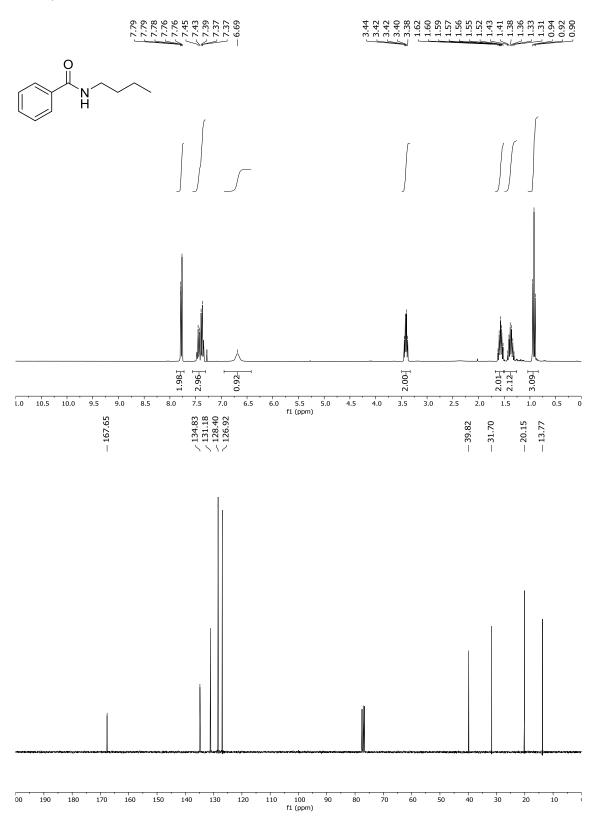




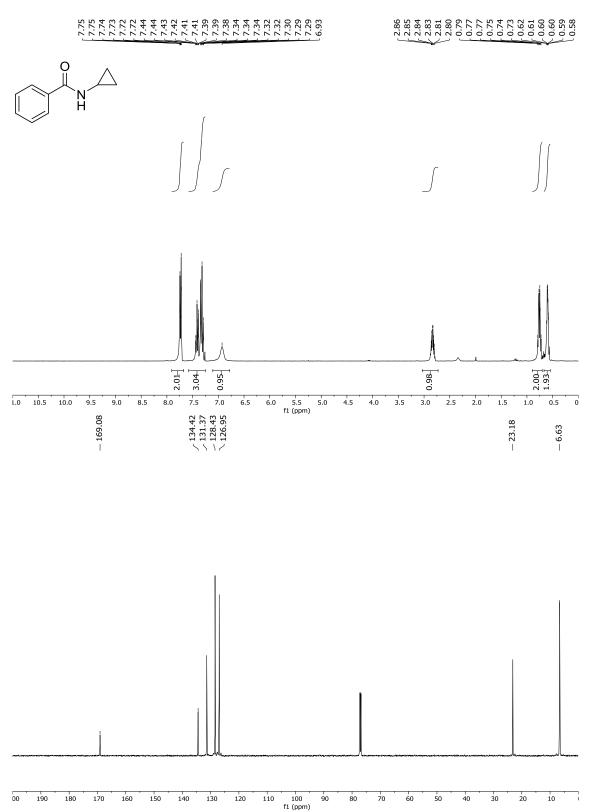

N-Benzylbenzamide

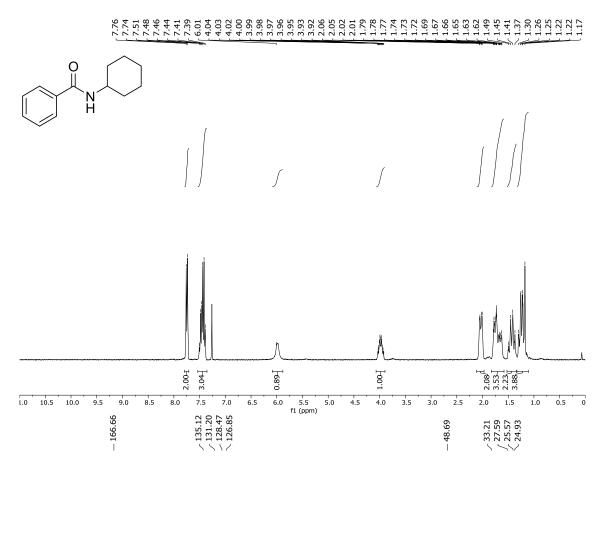
N-(2-Methoxybenzyl)benzamide

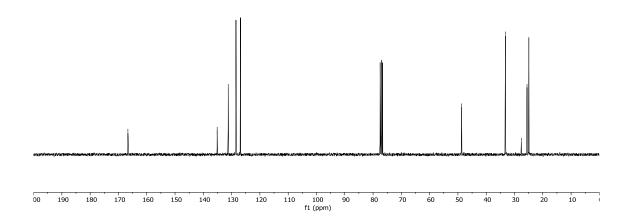


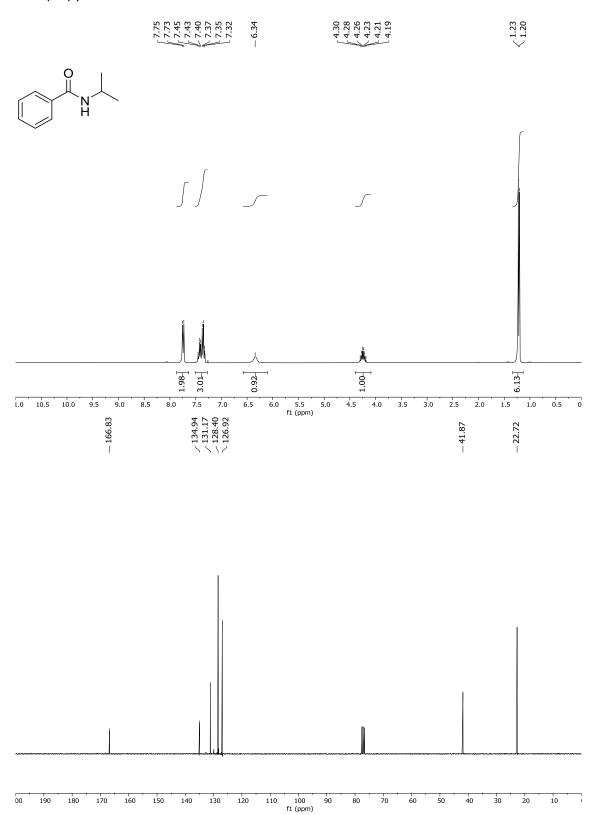


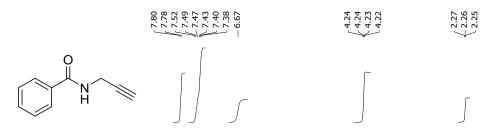
f1 (ppm)

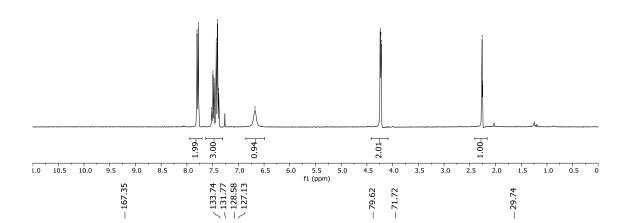

N-(3,4-Dimethoxyphenyethyl)benzamide

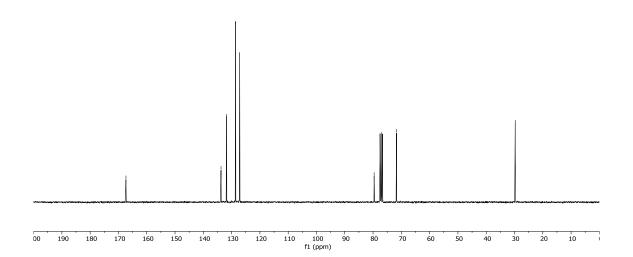


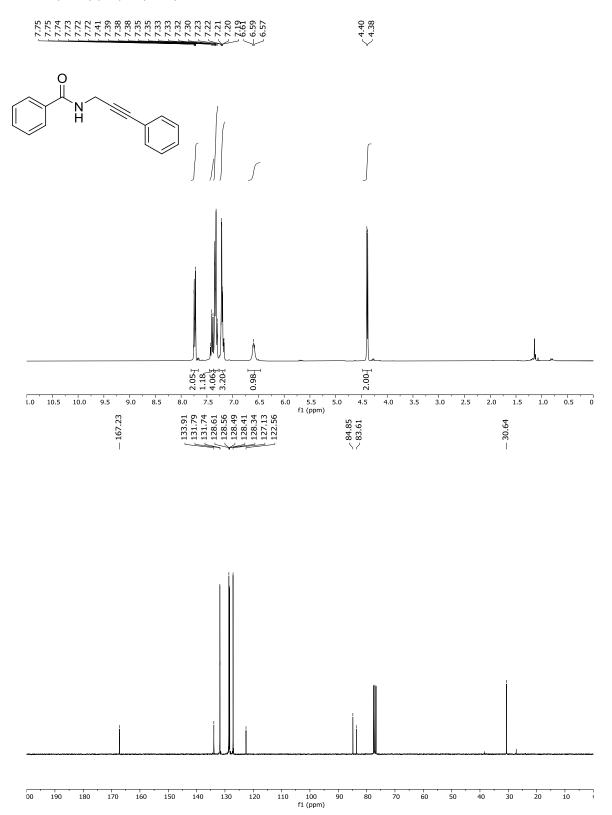

N-Butylbenzamide

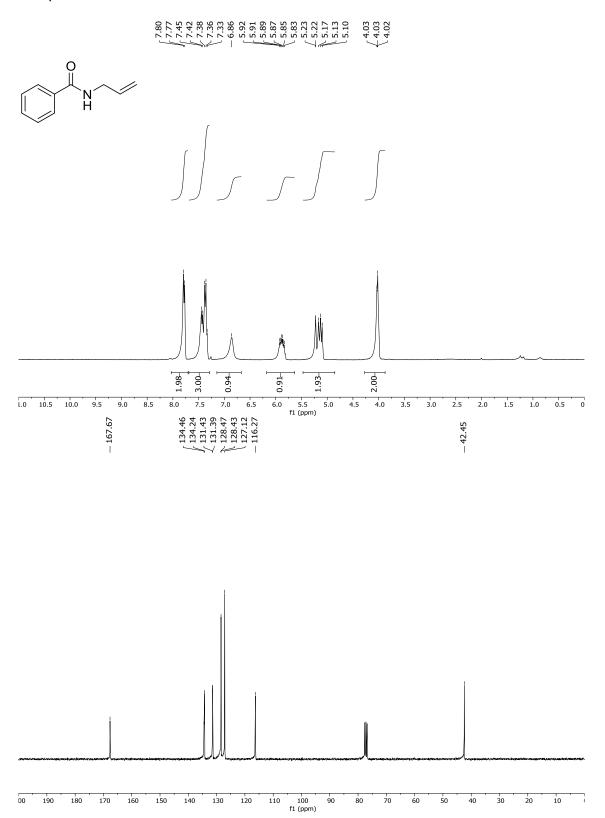

N-Cyclopropylbenzamide



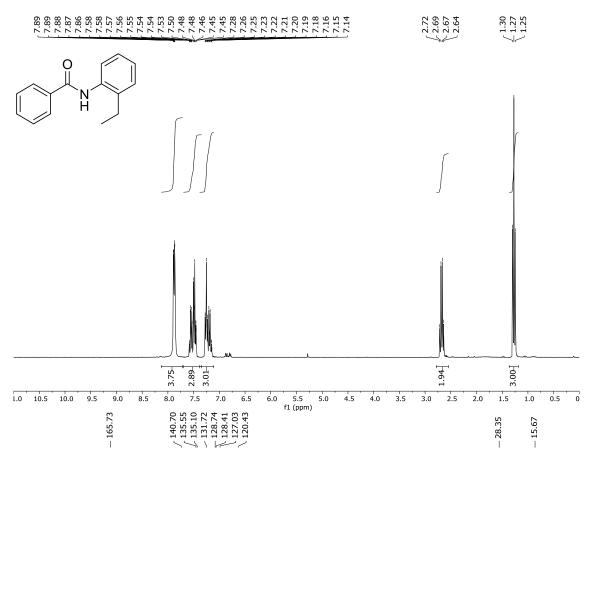


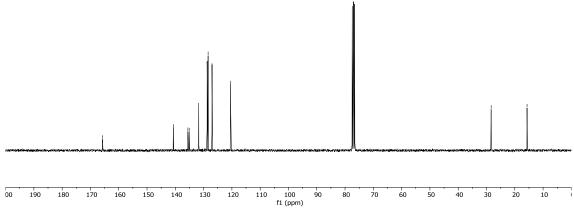

N-Isopropylbenzamide


N-(Prop-2-yn-1-yl)benzamide

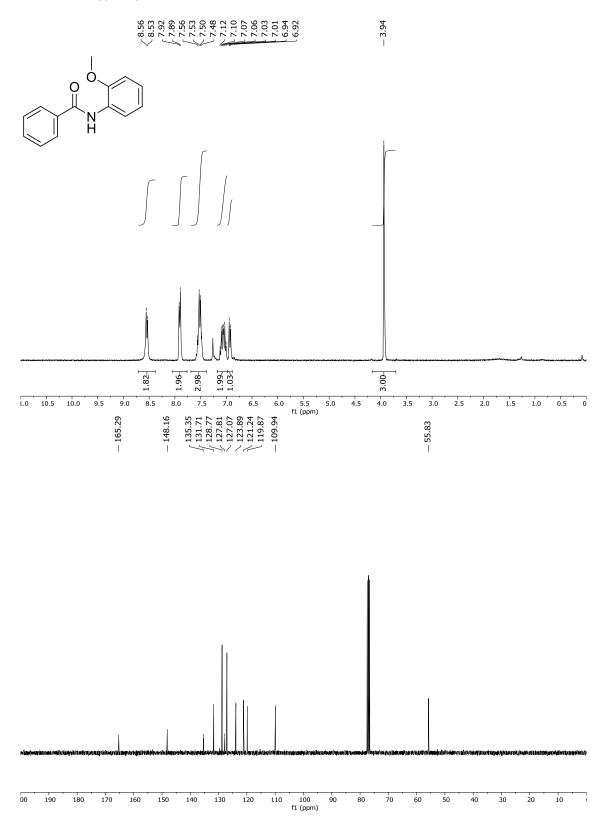


N-(3-phenylprop-2-yn-1-yl)benzamide

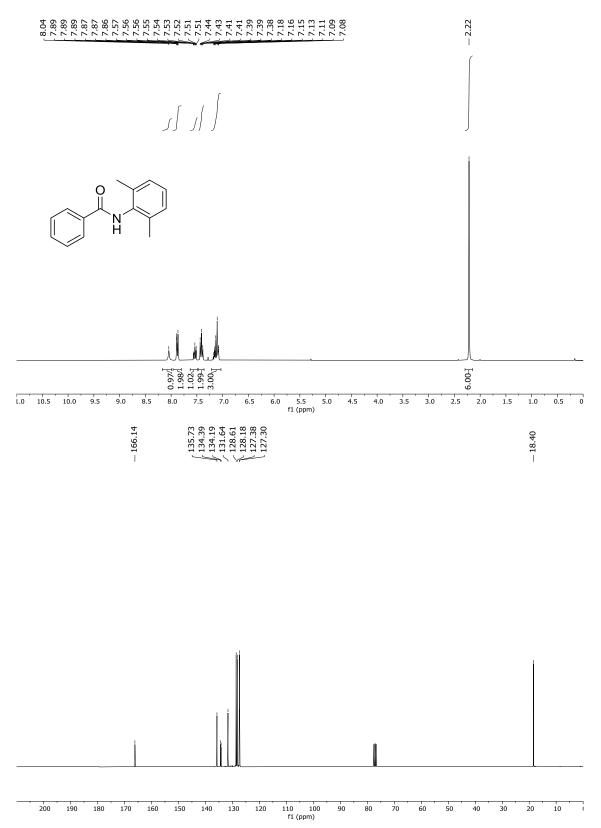

N-Allylbenzamide

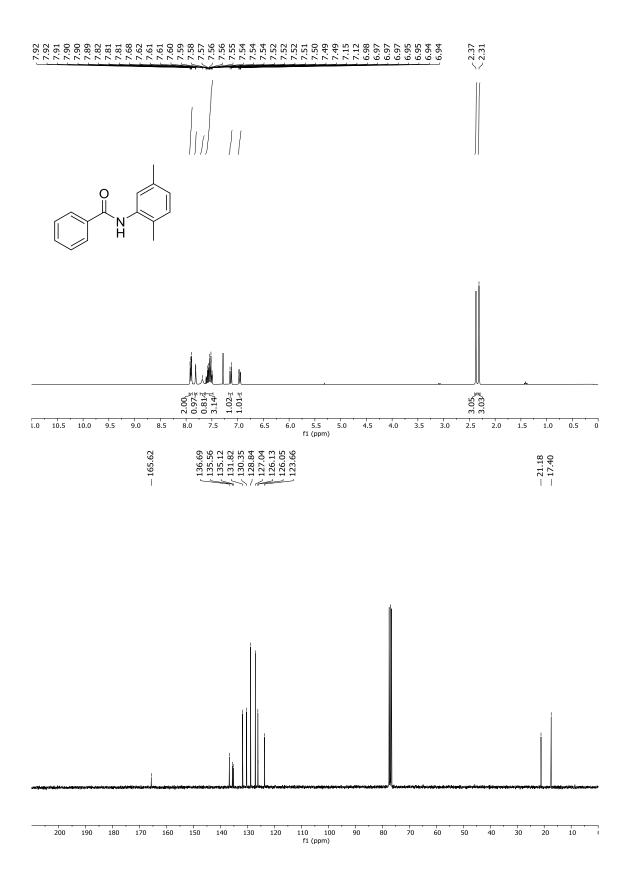


N-Phenylbenzamide

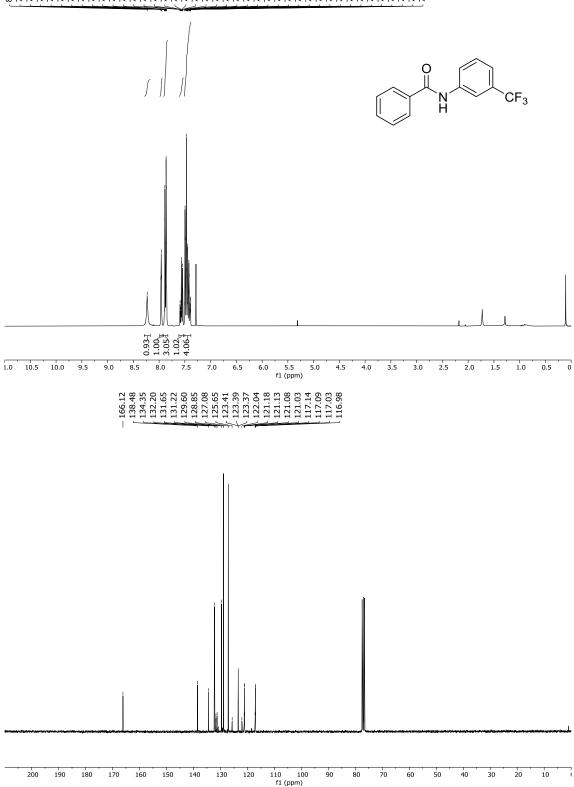


N-(2-Ethylphenyl)benzamide

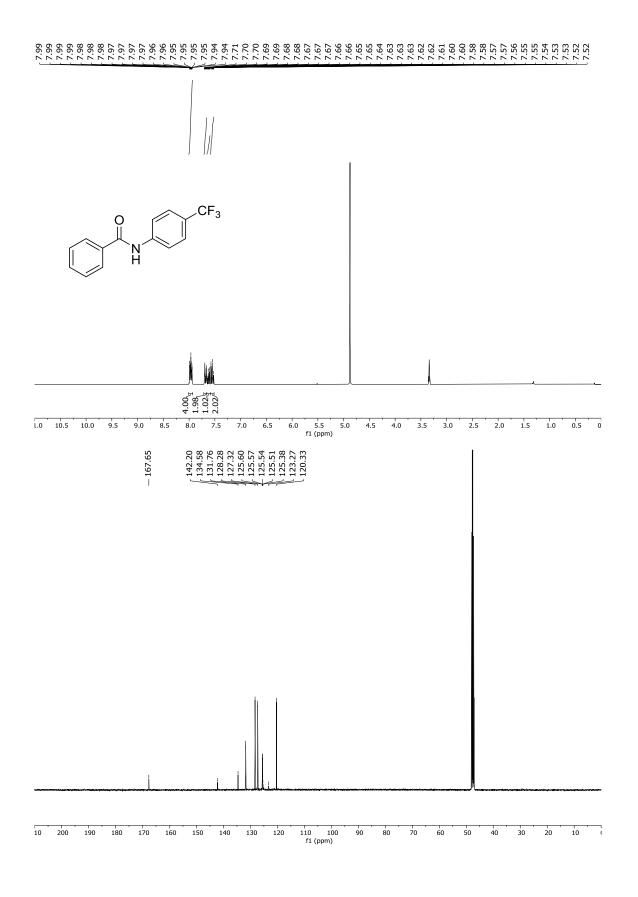




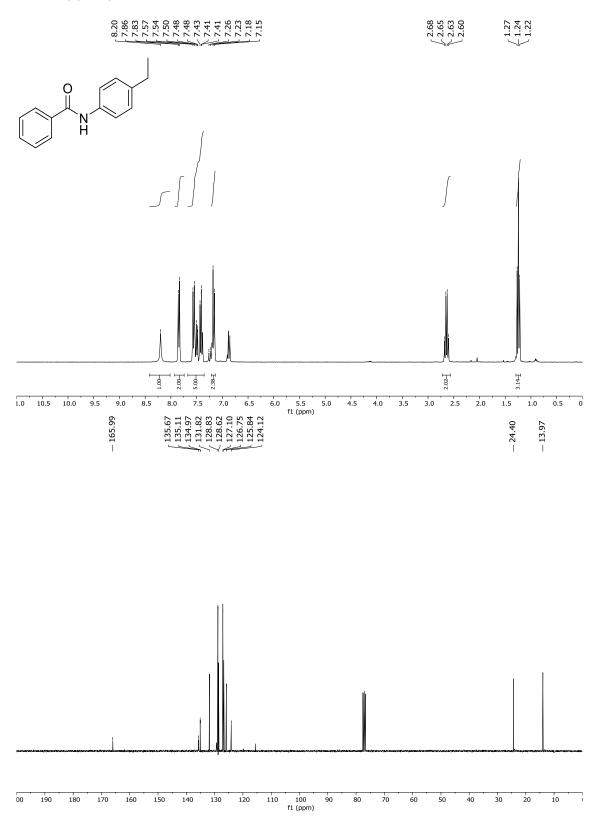
N-(2-Methoxyphenyl)benzamide



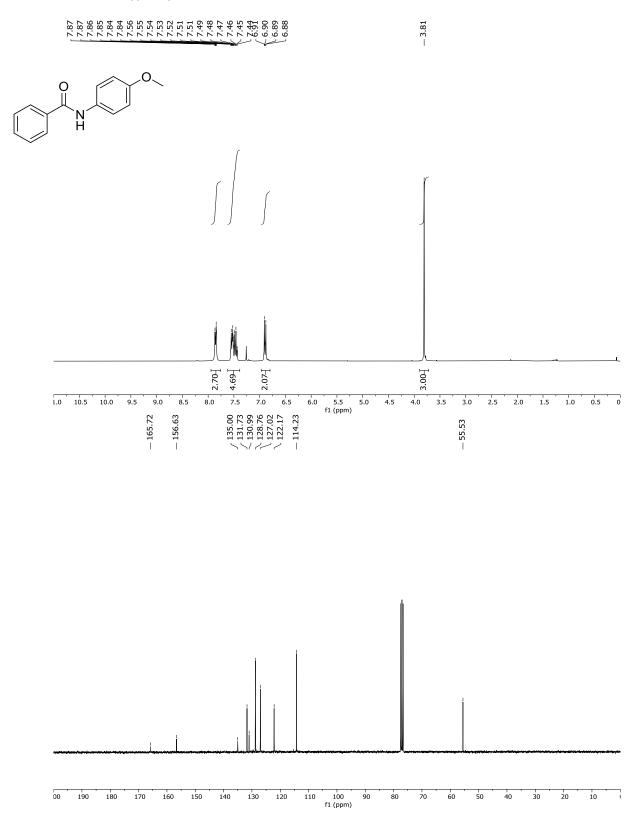
N-(2,6-dimethylphenyl)benzamide

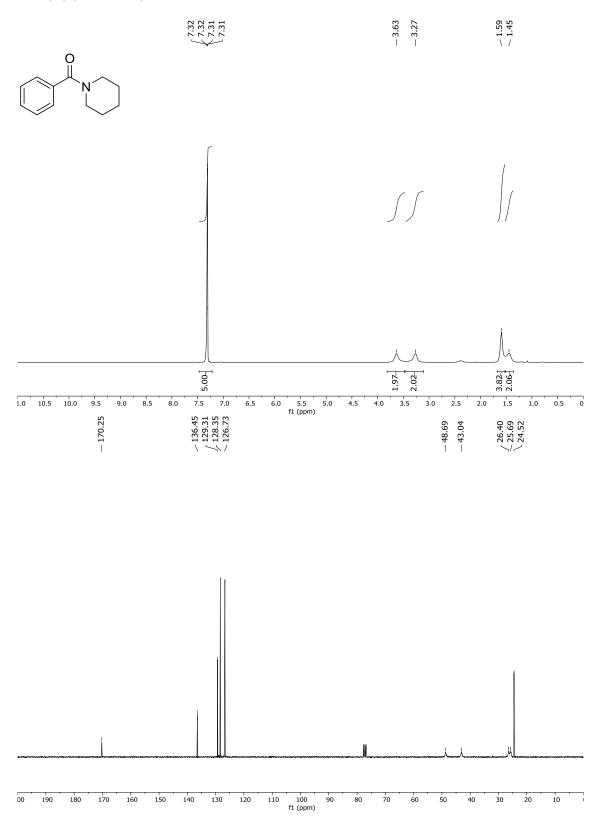


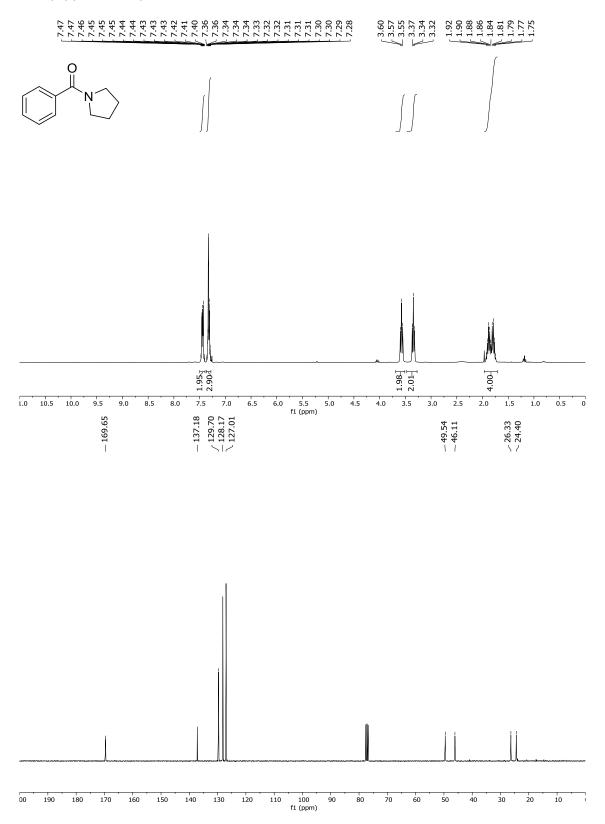
N-(3-(trifluoromethyl)phenyl)benzamide

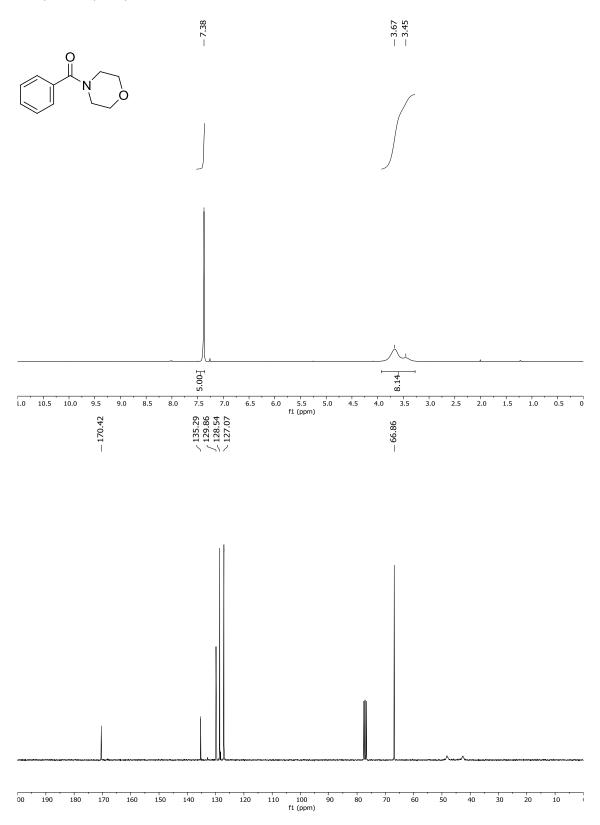


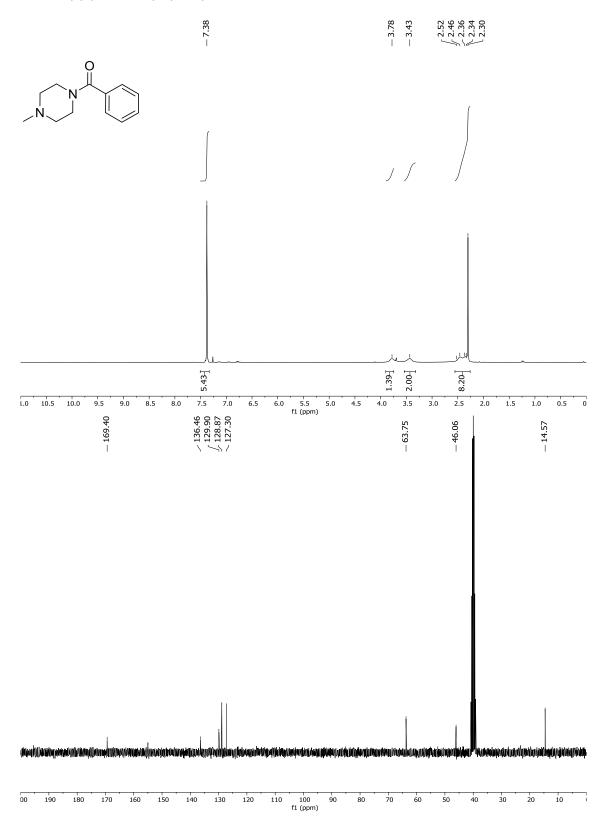
8.8.2 8.7.7.96 7.7.91 7.7.95 7.7.

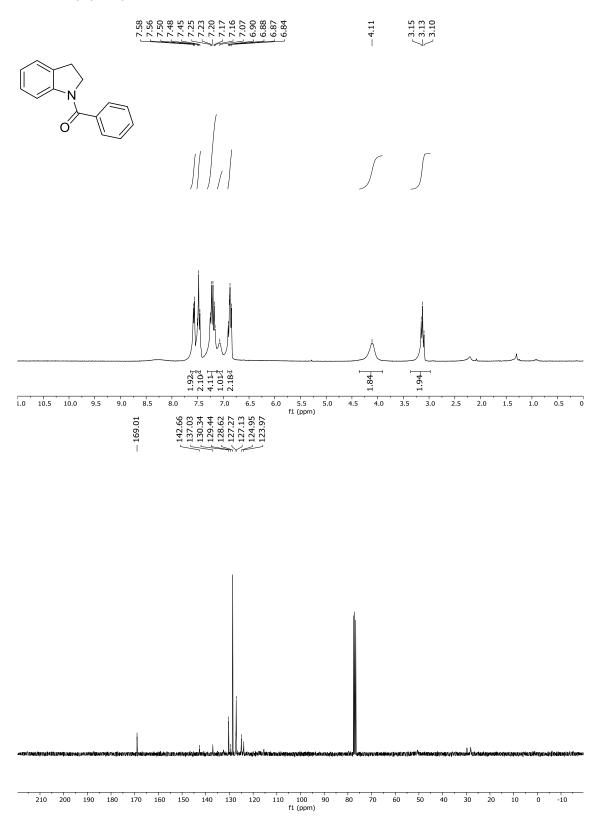

N-(4-(trifluoromethyl)phenyl)benzamide

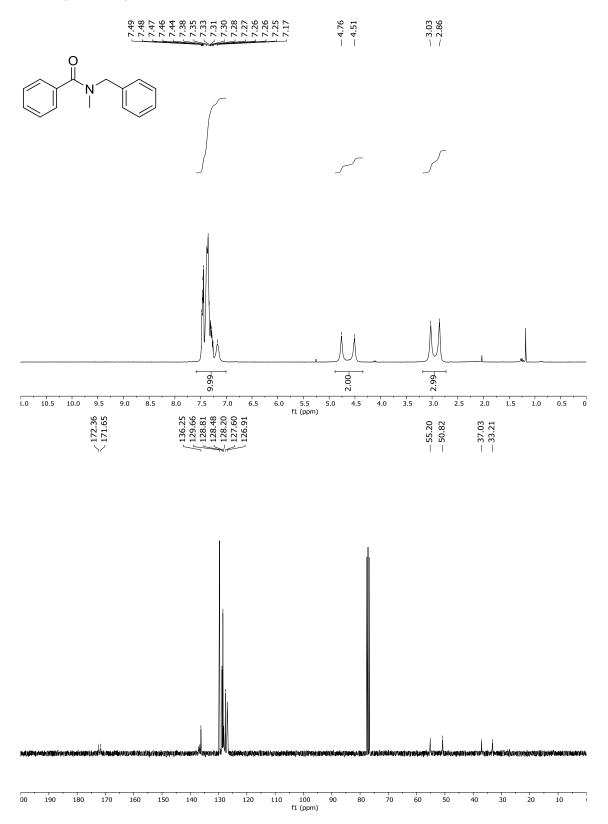

N-(4-Ethylphenyl)benzamide

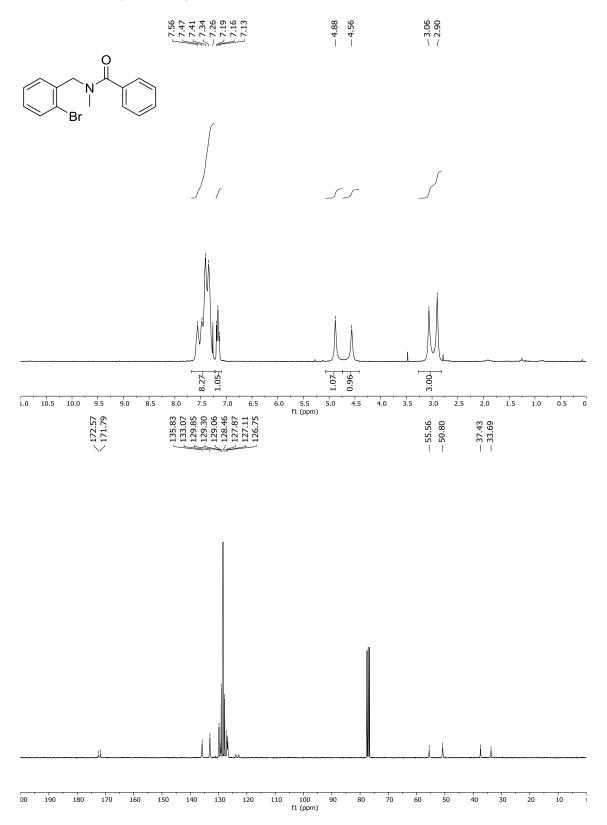

N-(4-methoxyphenyl)benzamide

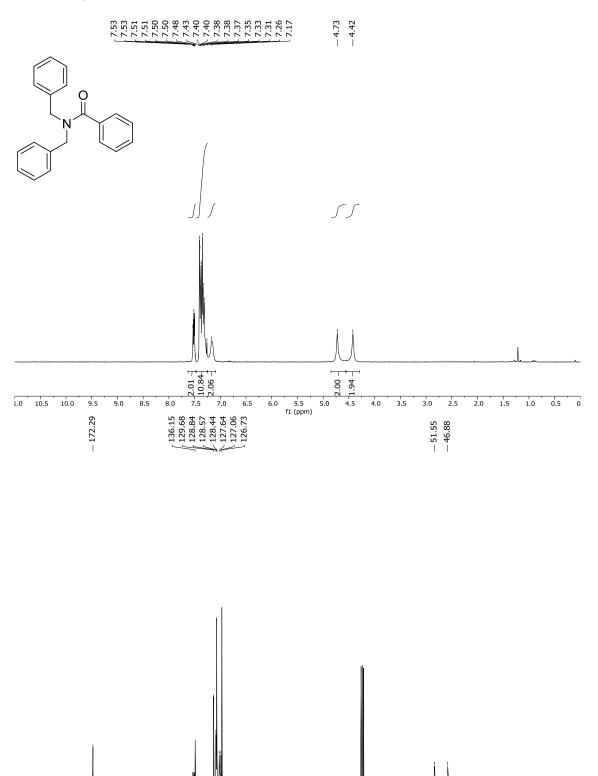

Phenyl(piperdidin-1-yl)methanone


Phenyl(pyrrolidin-1-yl)methanone

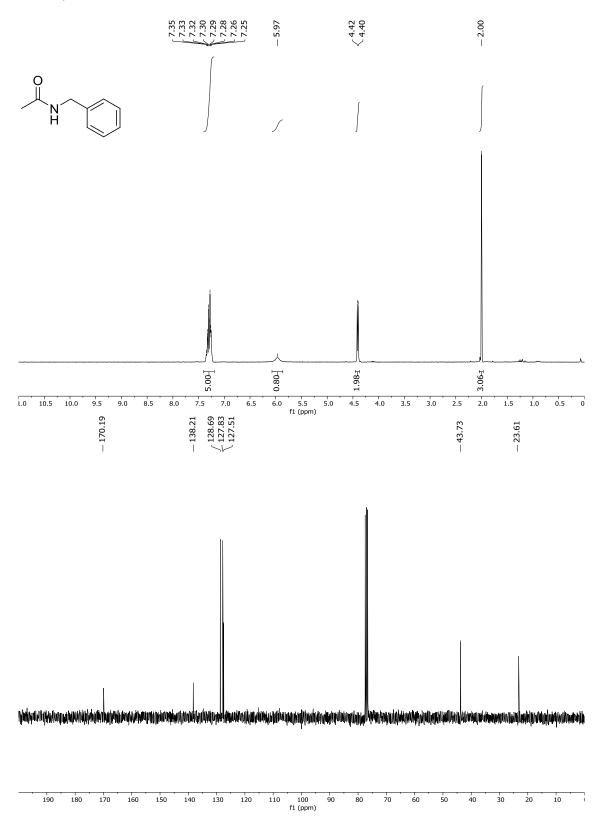

Morpholino(phenyl)methanone


(4-Methylpiperazin-1-yl)(phenyl)methanone

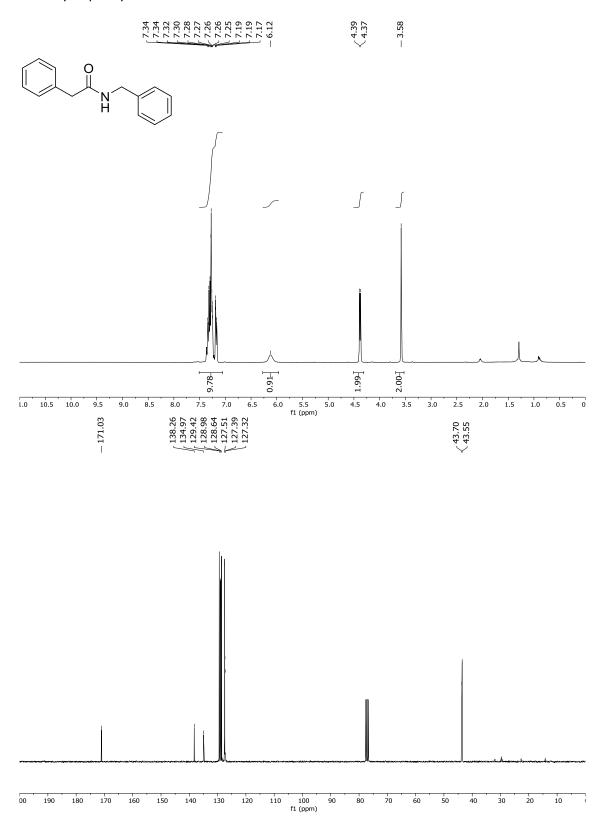

Indolin-1-yl(phenyl)methanone


N-Benzyl-N-methylbenzamide

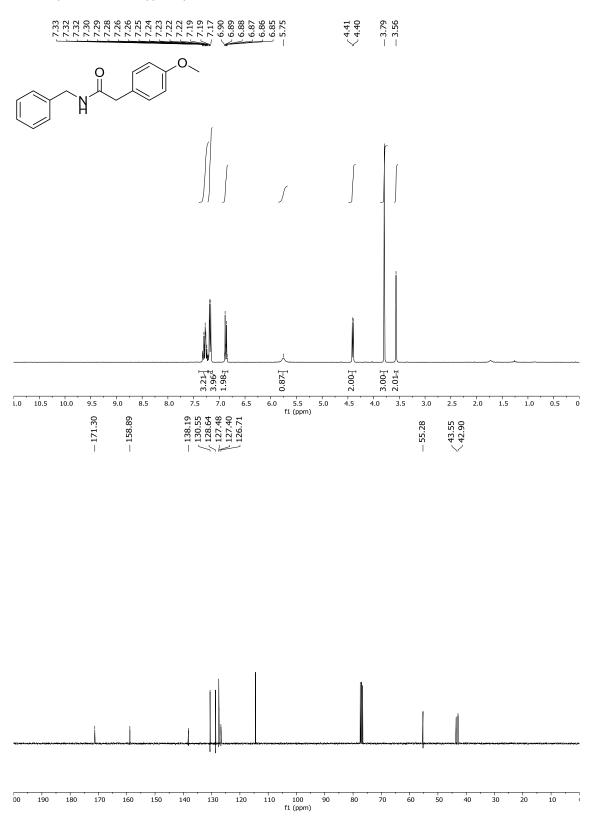
N-(2-Bromobenzyl)-N-methylbenzamide

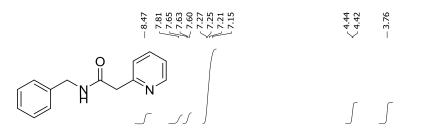


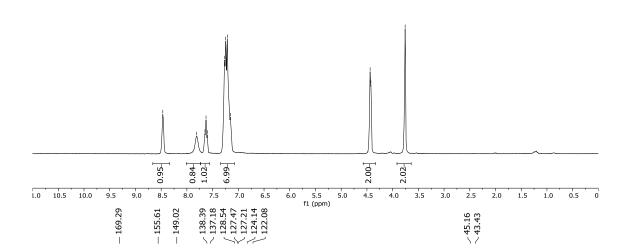
N,N-Dibenzylbenzamide

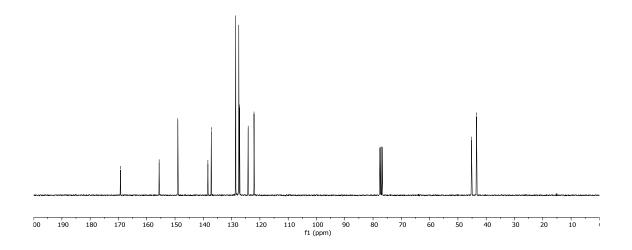


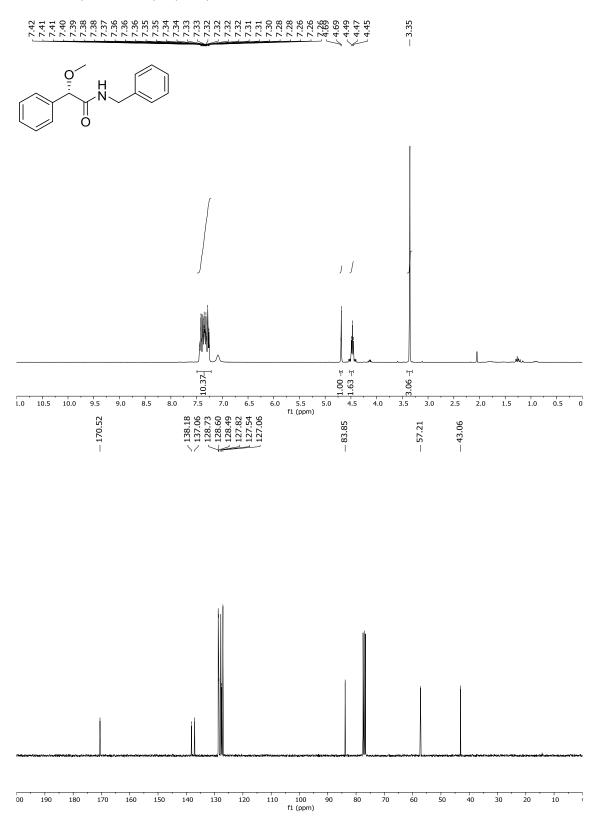
f1 (ppm)

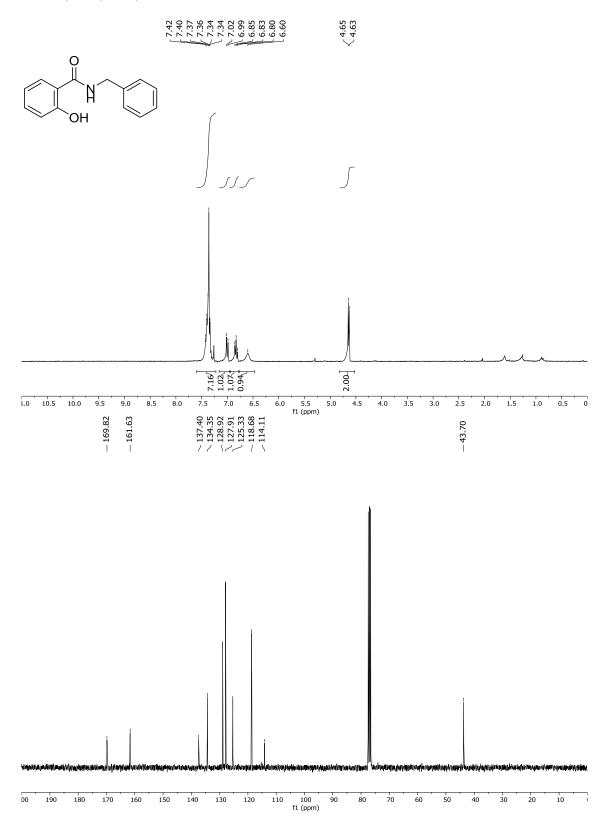

N-Benzylacetamide

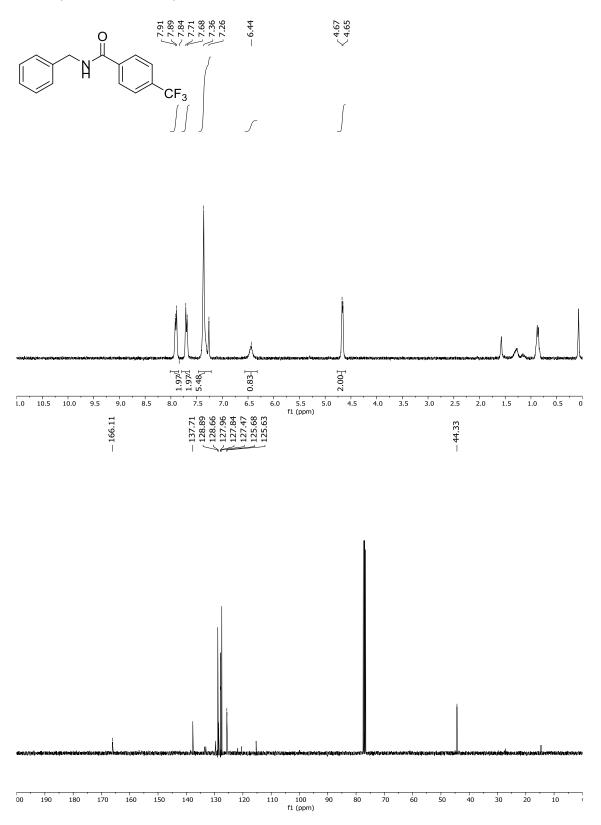

N-Benzyl-2-phenylacetamide

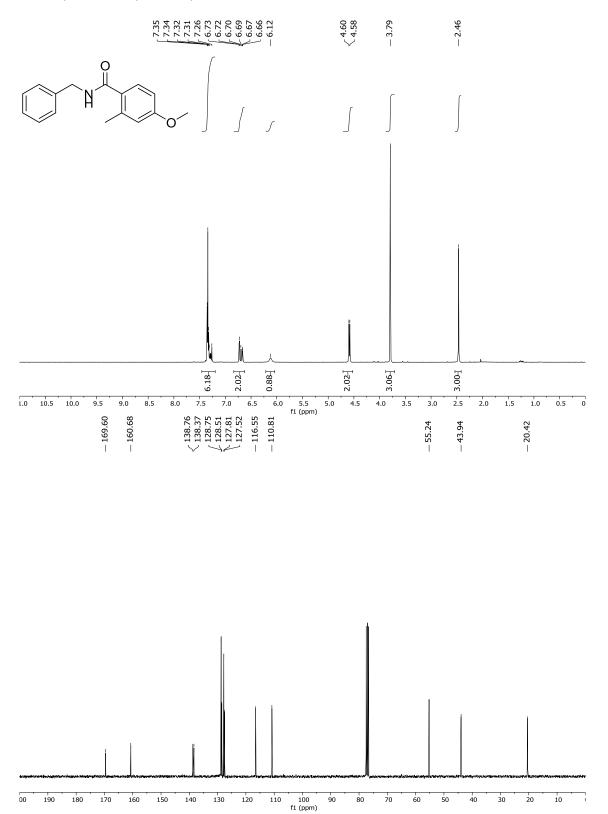


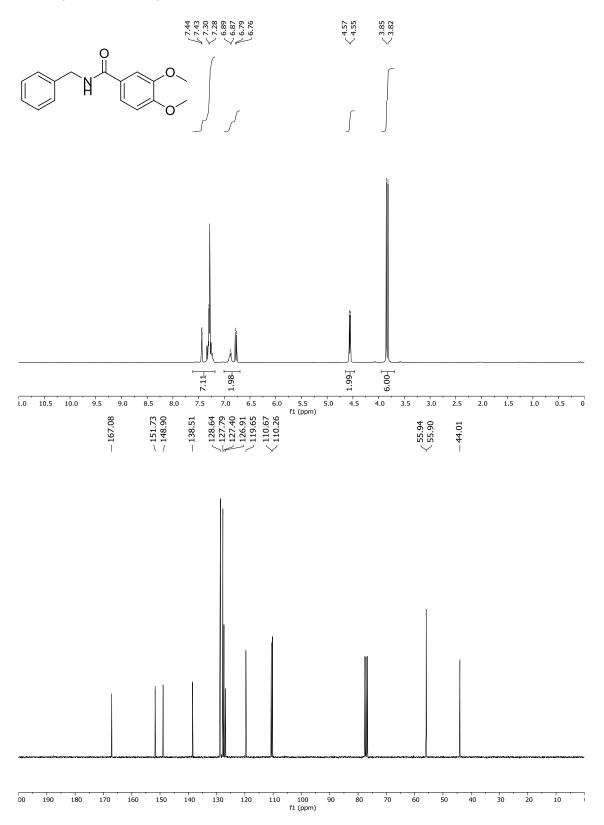

N-Benzyl-2-(4-methoxyphenyl)acetamide

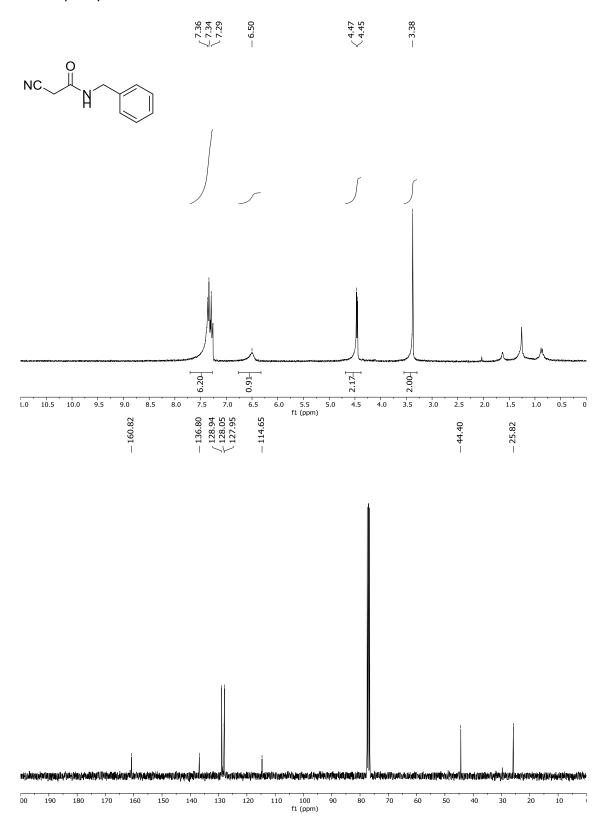

N-Benzyl-2-(pyridine-2-yl)acetamide

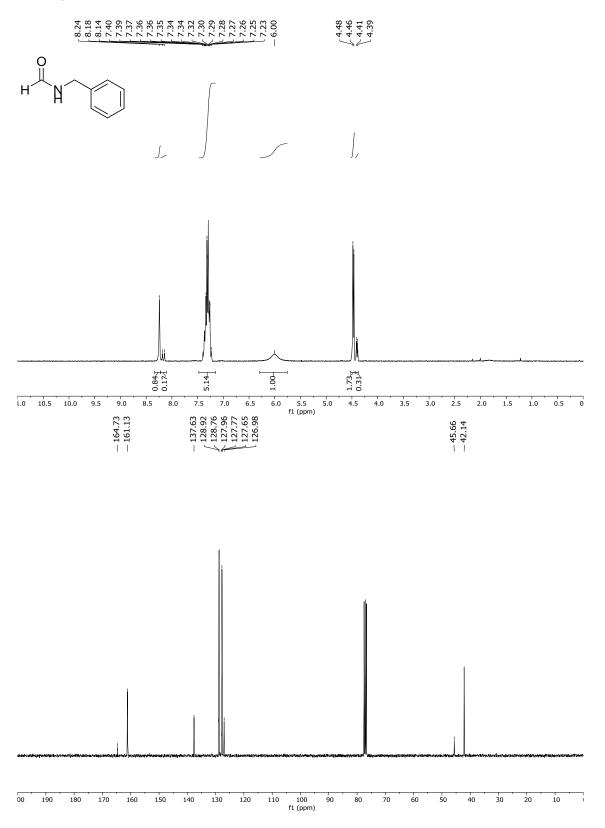


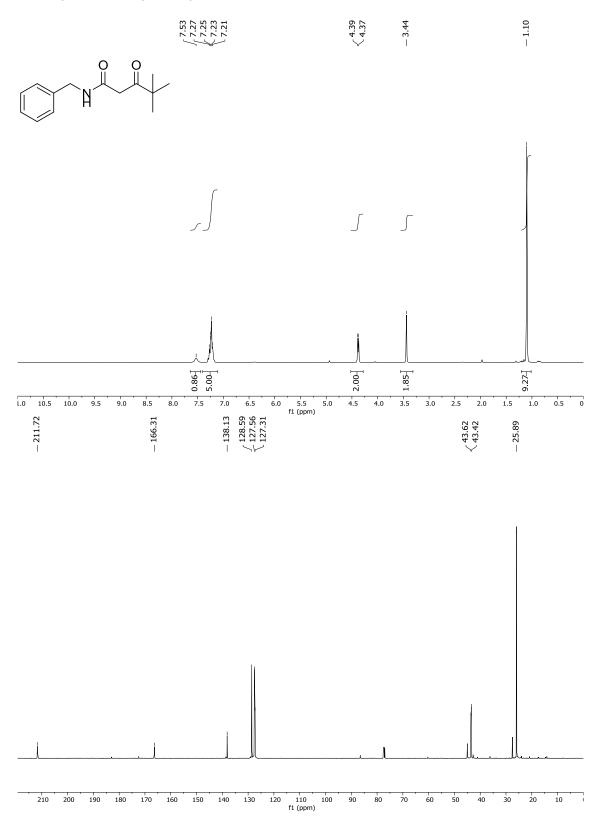

(S)-N-Benzyl-2-methoxy-2-phenylacetamide

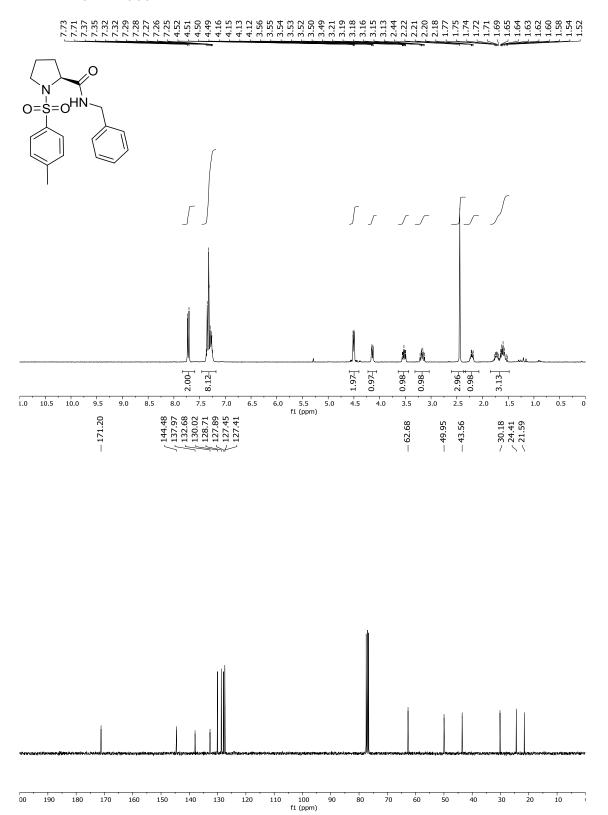

N-Benzyl-2-hydeoxybenzamide


N-Benzyl-4-(trifluoromethyl)benzamide

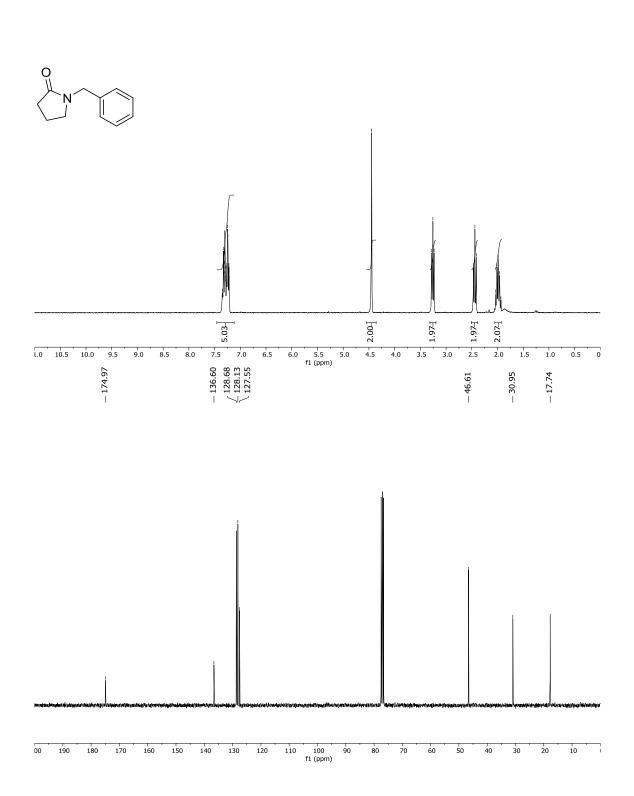

N-Benzyl-4-methoxy-2-methylbenzamide


N-Benzyl-3,4-dimethoxybenzamide

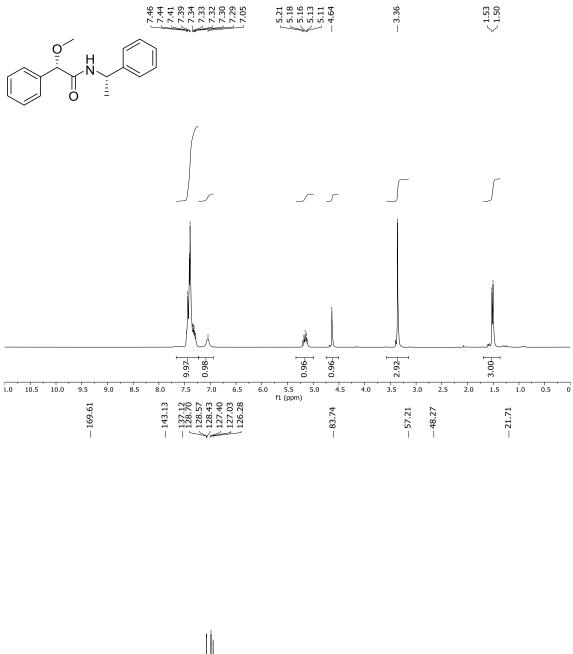

N-Benzyl-2-cyanoacetamide

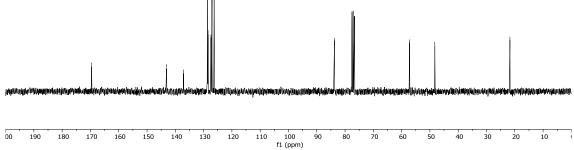

N-Benzylformamide

N-Benzyl-4,4-dimethyl-3-oxopentanamide



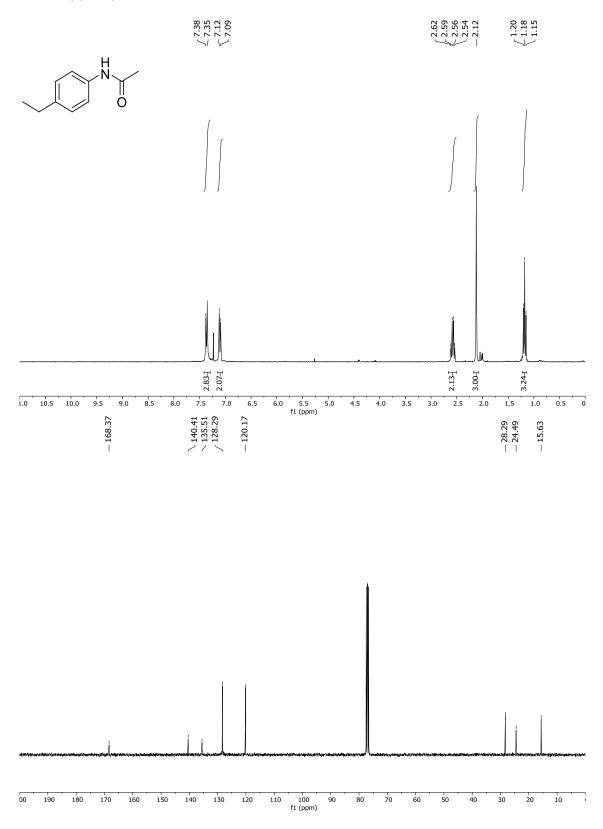
(S)-N-Benzyl-1-tosylpyrolidine-2-carboxamide

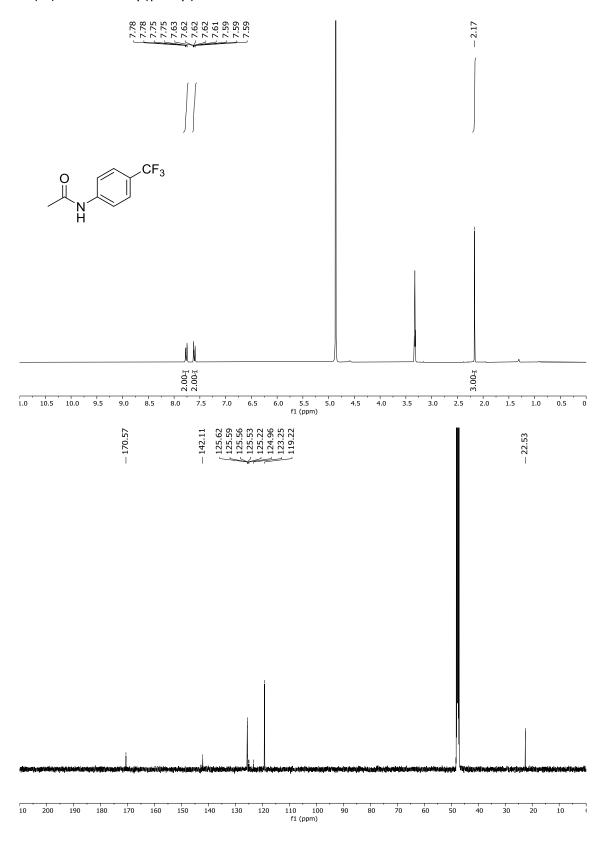


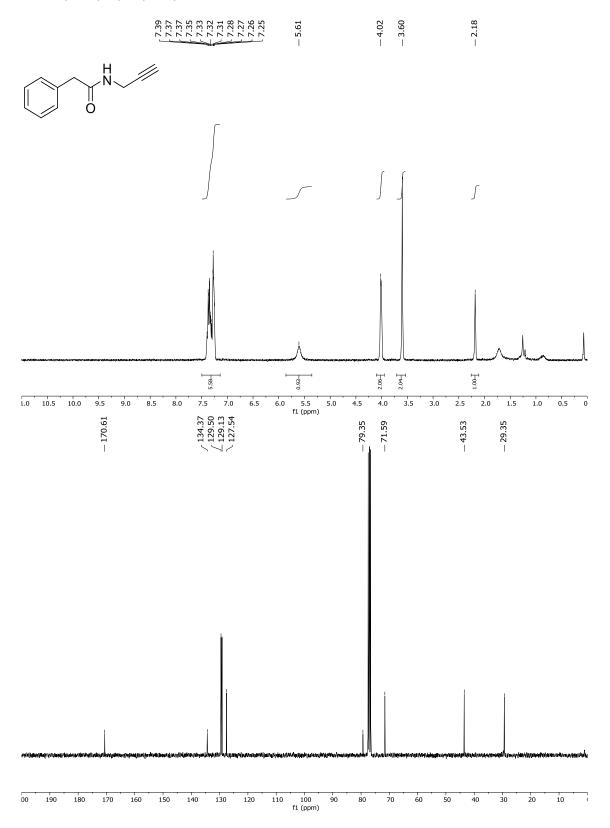

1-benzylpyrrolidin-2-one

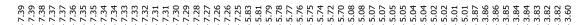


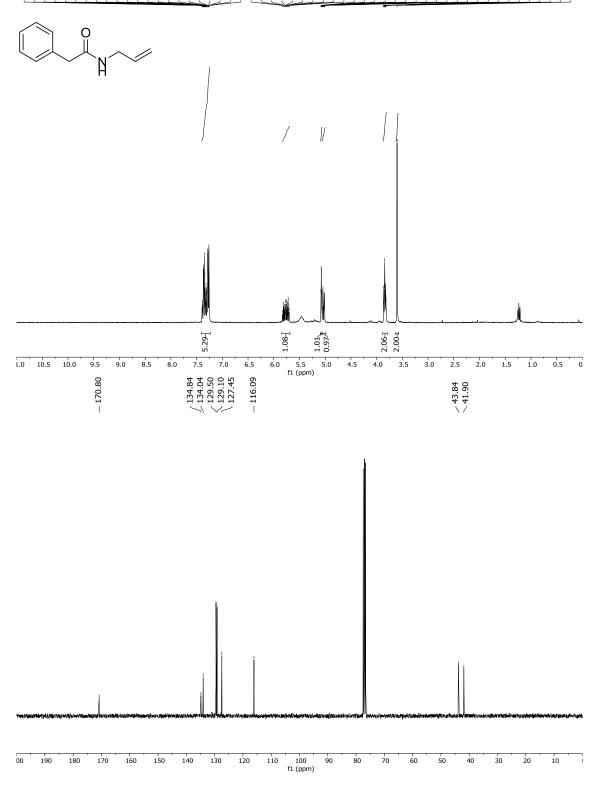
(S)-2-methoxy-2-phenyl-N-((S)-1phenylethyl)acetamide



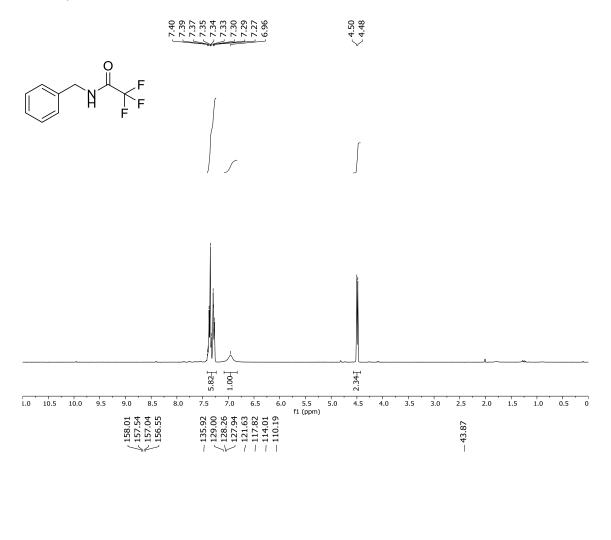

N-Phenylacetamide

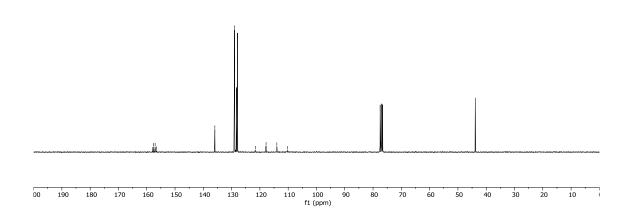

N-(4-Ethylphenyl)acetamide

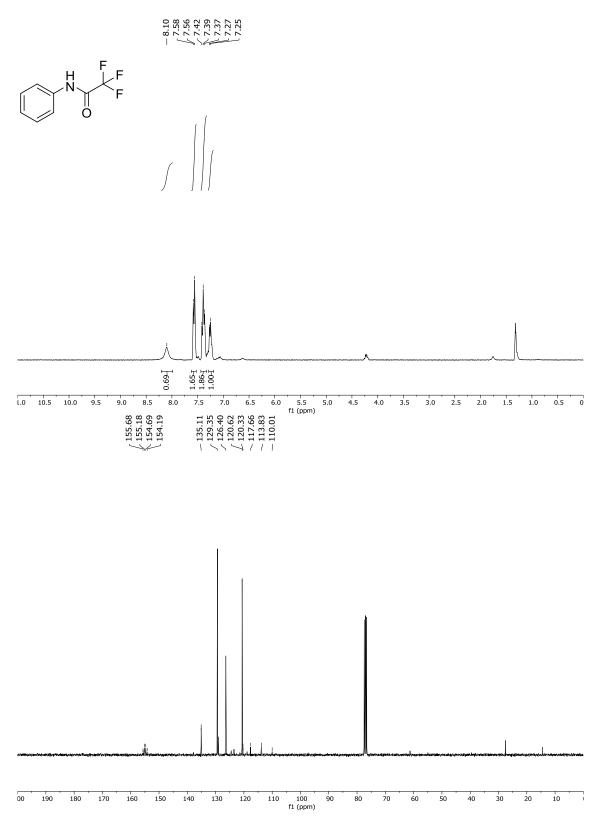

N-(4-(trifluoromethyl)phenyl)acetamide



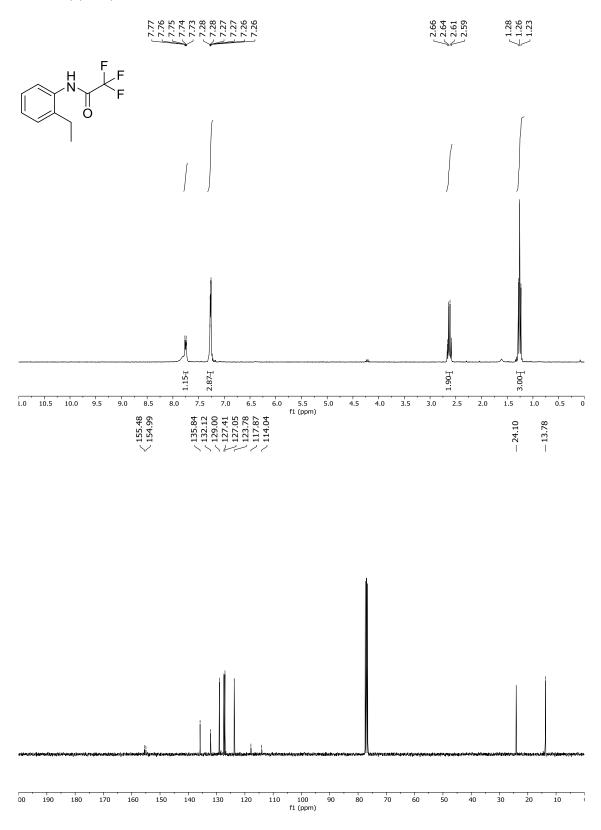
2-Phenyl-N-(prop-2-yn-1-yl)acetamide

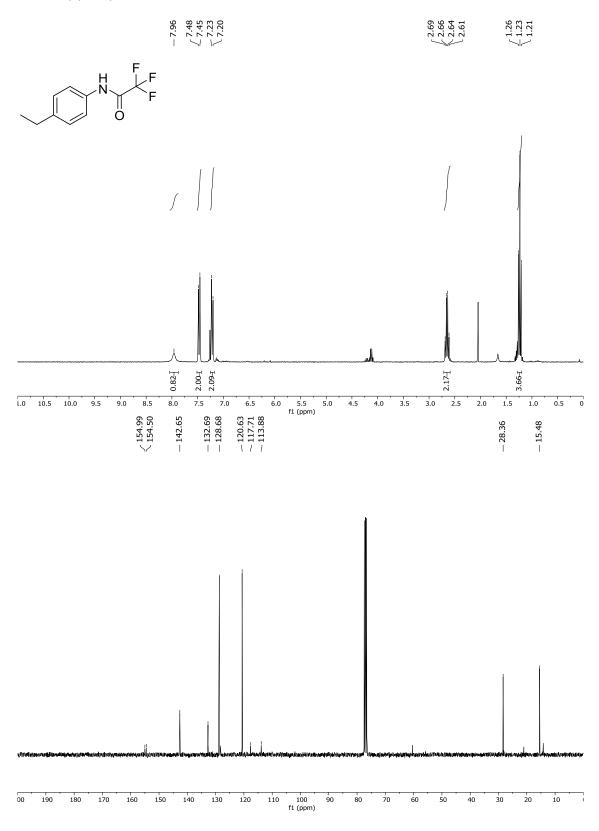


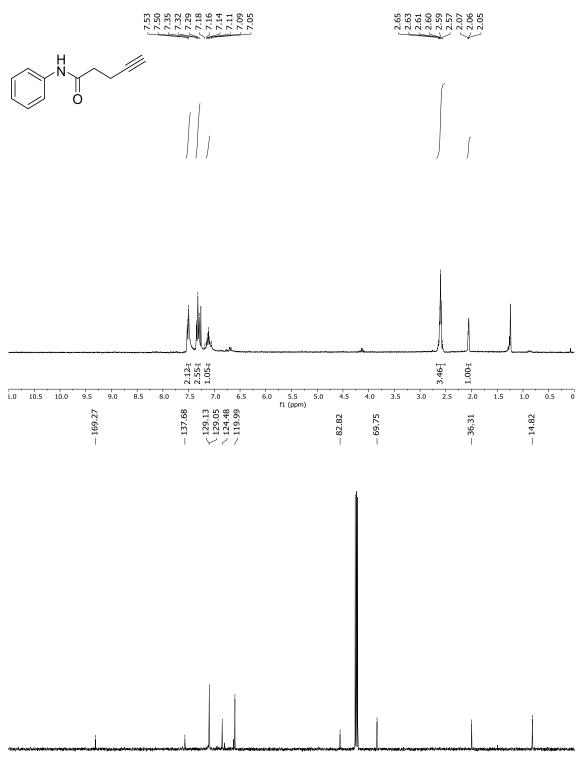

N-Allyl-2-phenylacetamide



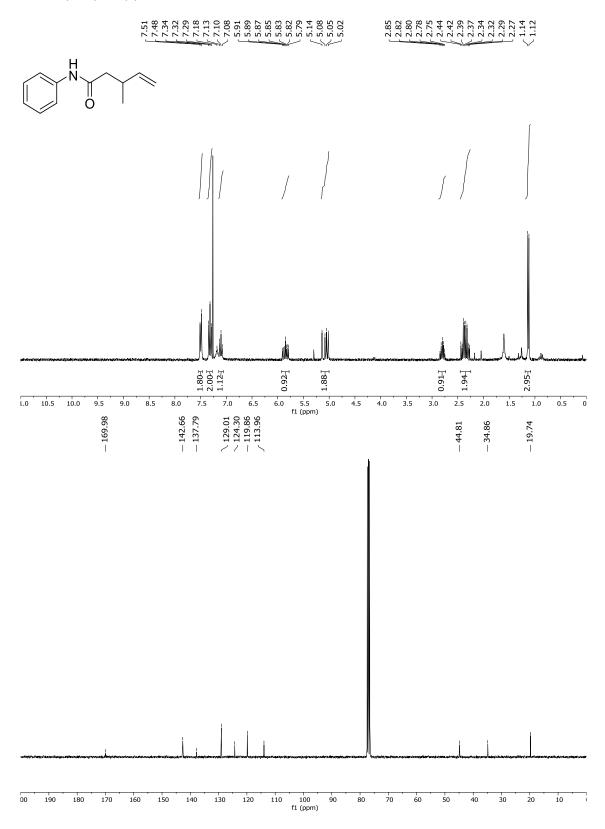
N-Benzyl-2,2,2-trifluoroacetamide



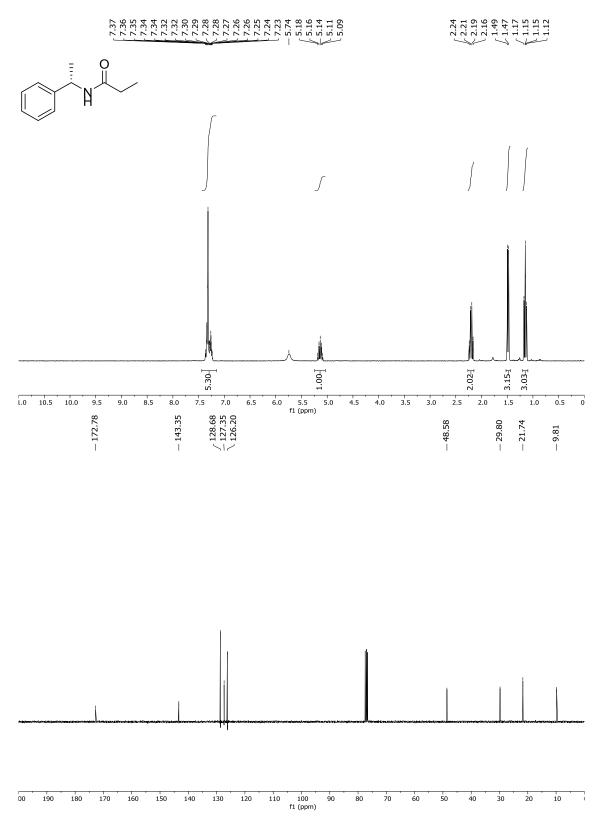

2,2,2-Trifluoro-N-phenylacetamide


N-(2-Ethylphenyl)-2,2,2-trifluoroacetamide

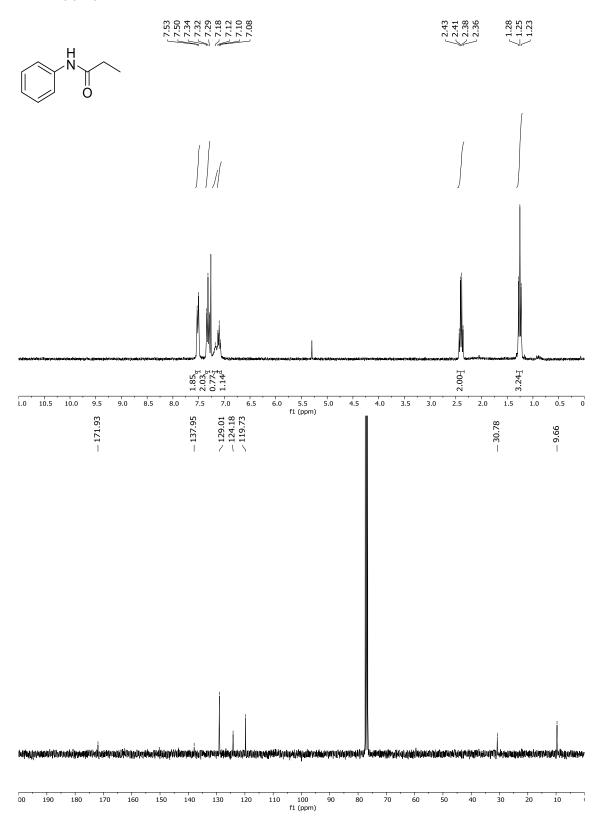
N-(4-Ethylphenyl)-2,2,2-trifluoroecetamide

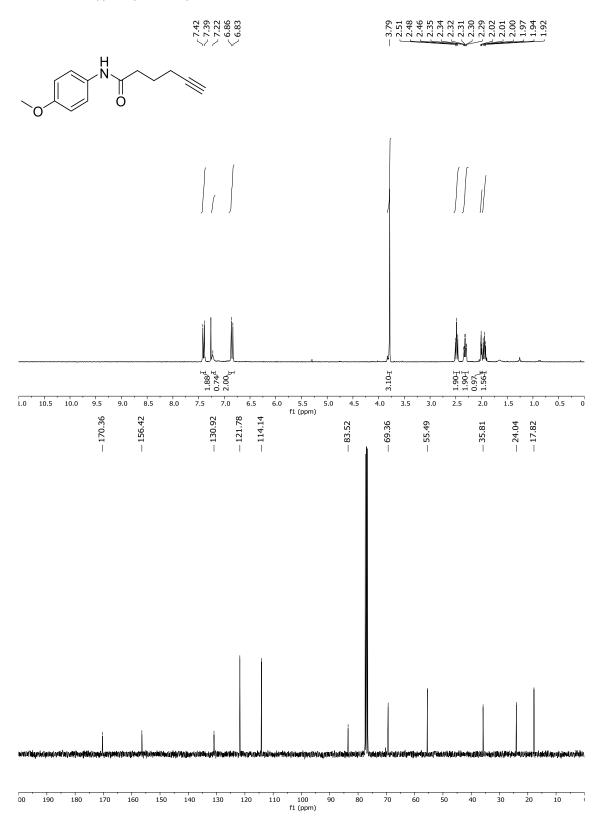


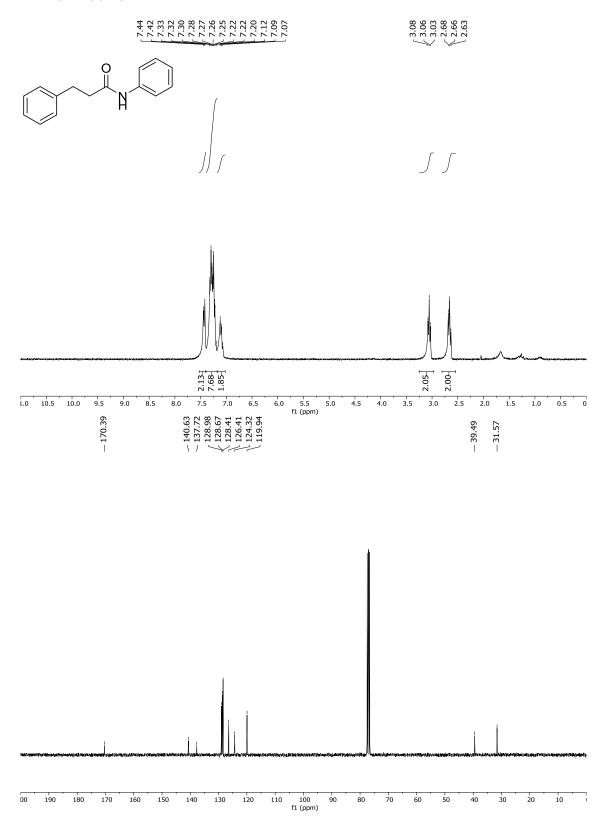
N-Phenylpent-4-ynamide

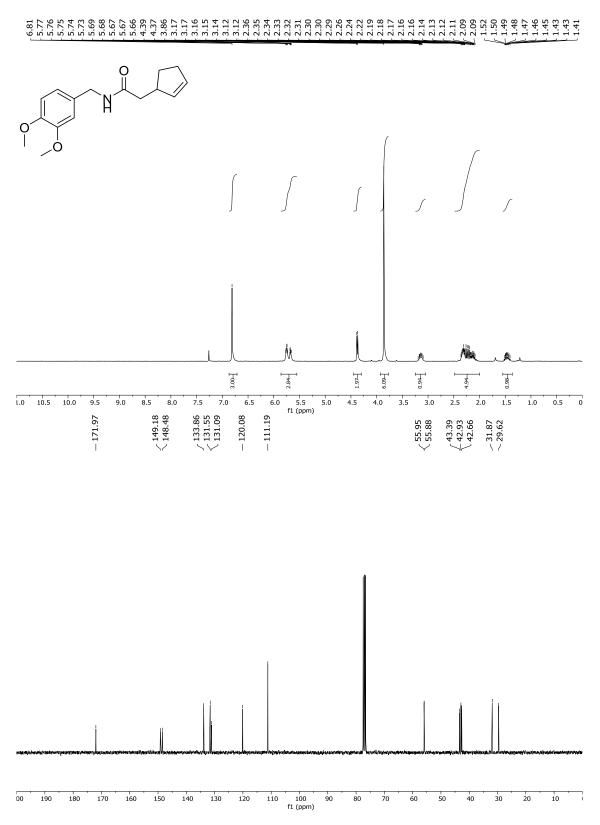


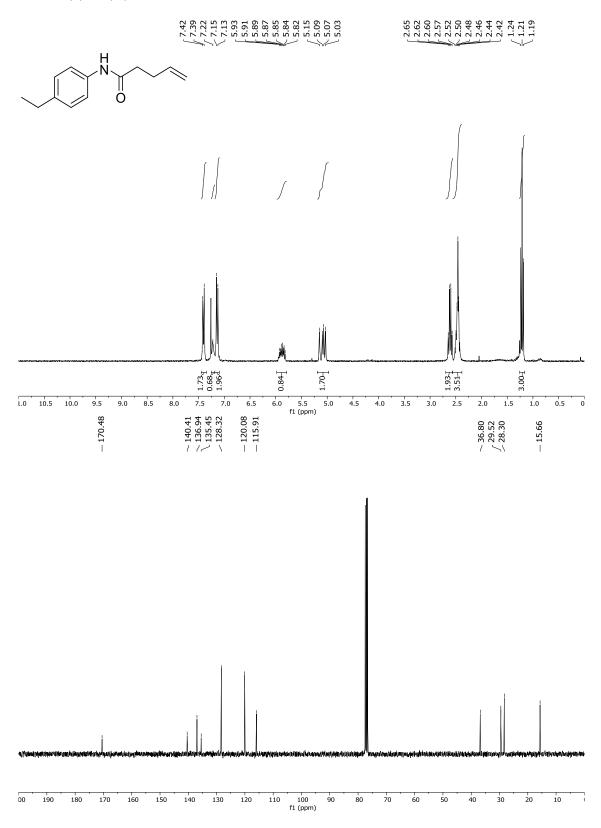
f1 (ppm)

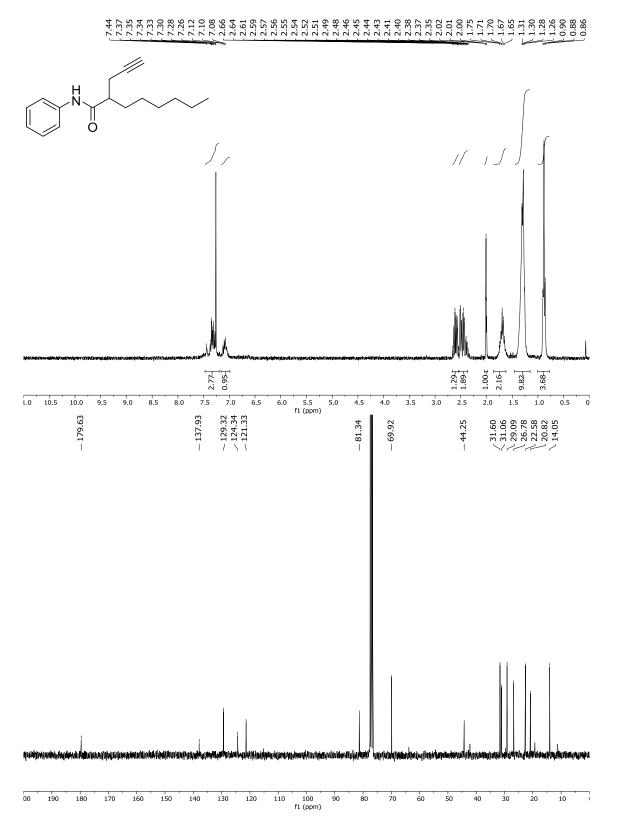

3-Methyl-N-phenylpent-4-enamide


(S)-N-(1-Phenylethyl)propionamide

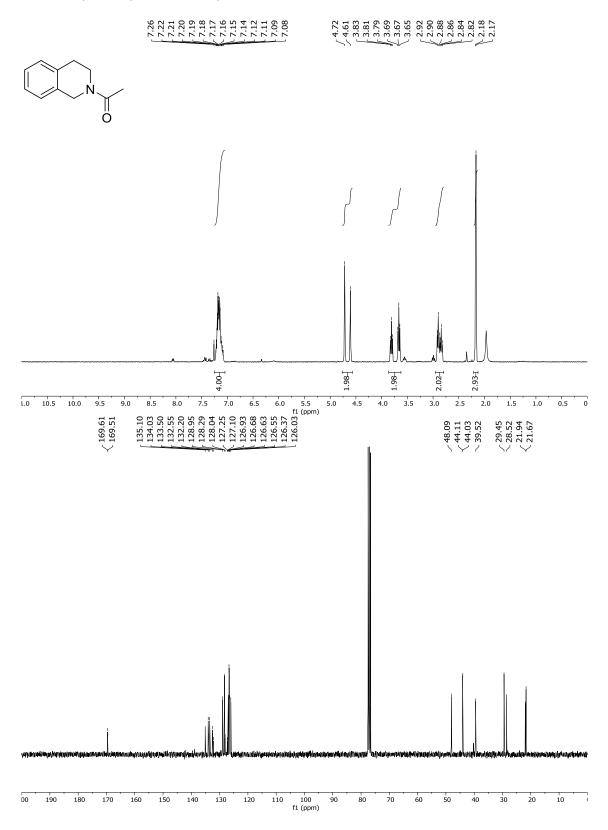

N-Phenylpropionamide


N-(4-Methoxyphenyl)hex-5-ynamide

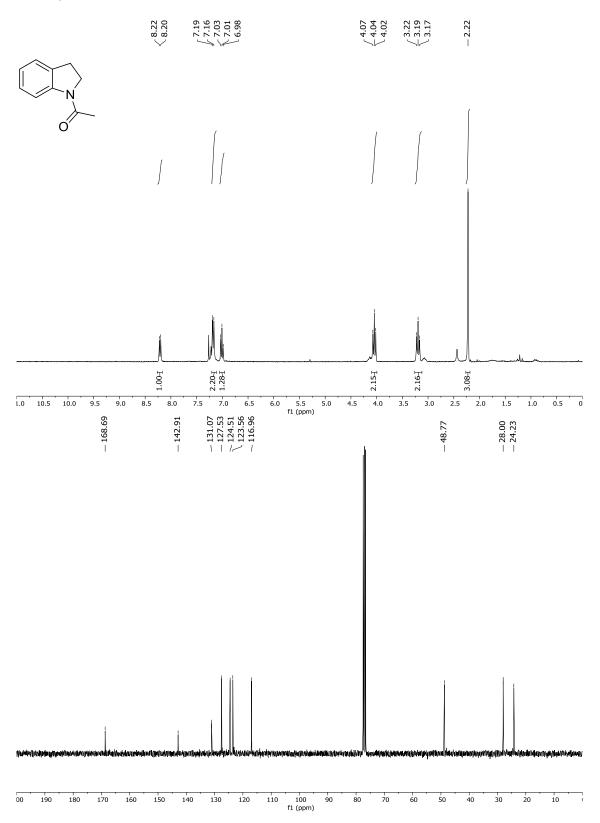

N-3-Diphenylpropanamide

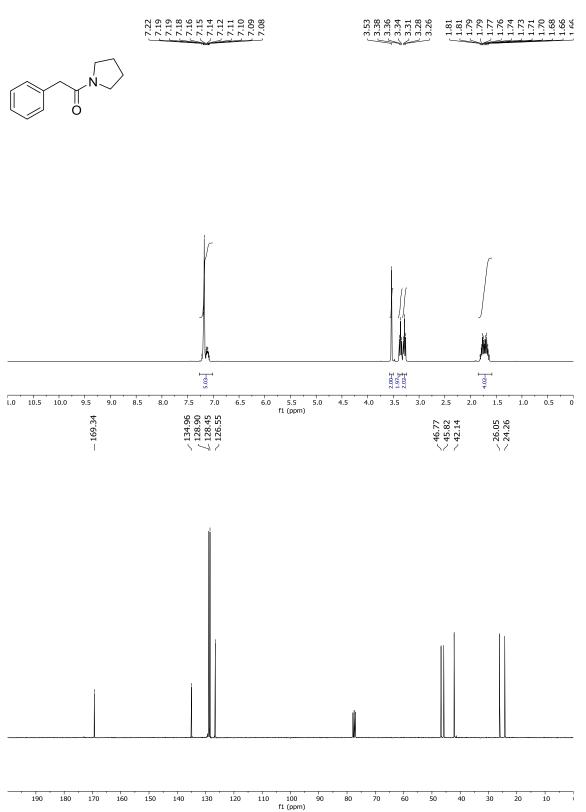


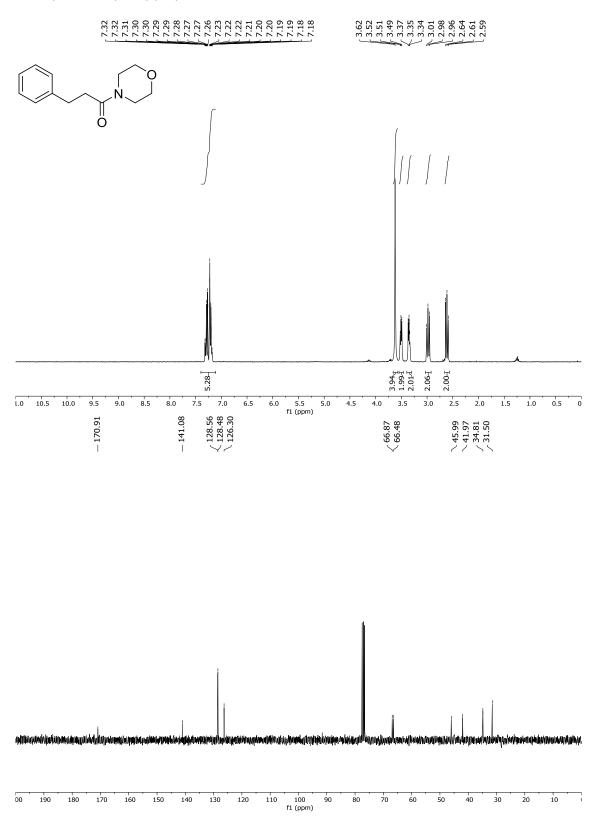
2-(Cyclopent-2-en-yl)-N-(3,4-dimethoxybenzyl)acetamide

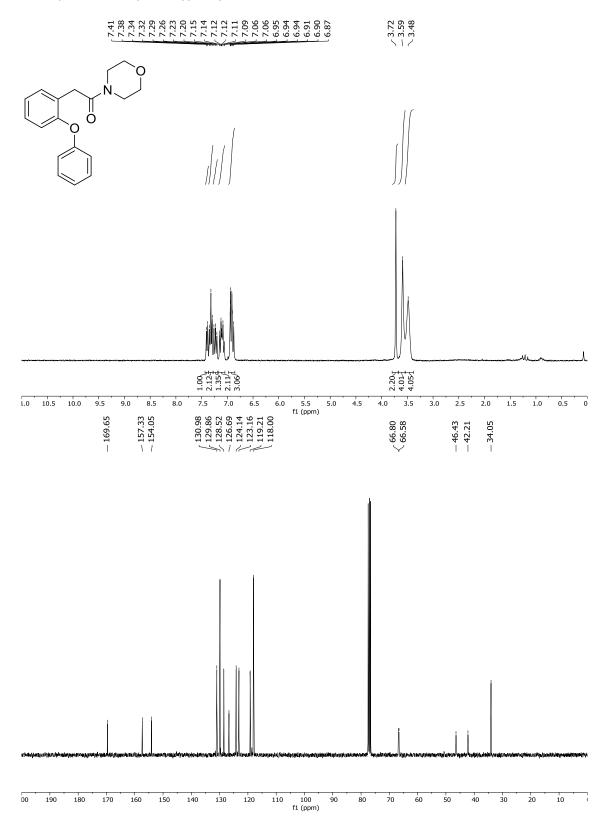


N-(4-Ethylphenyl)pent-4-enamide




1-(3,4-Dihydroisoquinolin-2(1H)-yl)ethan-1-one


N-Acetylindoline


2-phenyl-1-(pyrrolidin-1-yl)ethan-1-one

1-morpholino-3-phenylpropan-1-one

1-morpholino-2-(2-phenoxyphenyl)ethan-1-one

