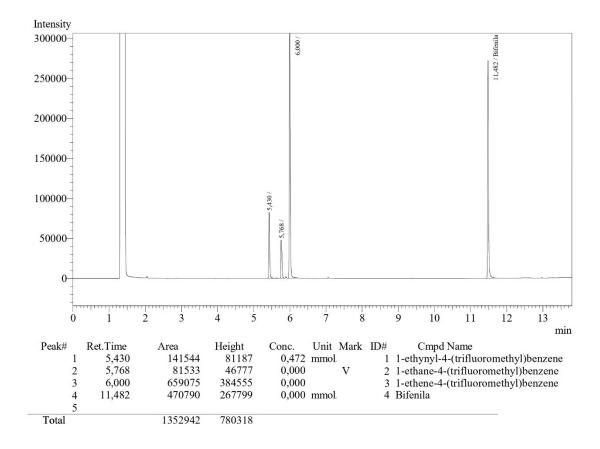
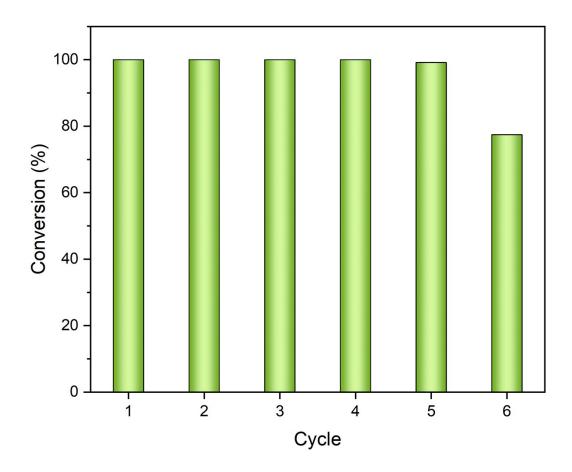
SUPPORTING INFORMATION

Hydrogen Spillover in N-doped Carbon Coating
Improves the Hydrogenation Activity of Nickel
Catalysts


Bruno H. Arpini,^a Jhonatan L. Fiorio,^b João V. F. da Costa,^a Jan-Ole Joswig,^b Liane M.

Rossi*^a


^a Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 781, São Paulo-SP 05508–000

^b Theoretische Chemie, Technische Universität Dresden, 01062 Dresden, Germany

Hydrogen Spillover; Nickel; N-doped carbon; Hydrogenation; Nanomaterials

Figure S1. Example of the GC data acquisition. Studied molecule in this case: 4-ethnyl- α, α, α -trifluorotoluene; biphenyl as internal standard. The first unnamed peak is the solvent: ethanol.

Figure S2. Recycling Ni5@NC/SiO₂ after 6 reactions, the conditions are: 80 °C, 250 min, 6 bar of $H_{2(g)}$. In the 6 reactions, the hybrid catalyst was washed with EtOH.